WTIA Technical Note No. 7

Health and Safety in Welding

This WTIA Technical Note is cited in the Safe Australia Model Code of Practice – Welding Processes under the WHS Act 2012

Fifth Edition 2013
This WTIA Technical Note is an Expert Technology Tool (ETT) developed with the support of WTIA Technical Panel 9 Health, Safety and Environment.

WTIA Technical Panel 9 members include:
- Glen Allan, WTIA
- Stan Ambrose OAM, WTIA
- Nicolaas Bothma, BOC Ltd
- Bruce Cannon, BlueScope Steel
- Joe Donato, DSTO
- Alistair Forbes, BOC Ltd
- Paul Gill, Xstrata Coal NSW
- Terry Gorman, 3M
- Carl Hussell, Quantec Solutions (Chairman)
- Prof John Norrish, University of Wollongong
- Dan Rizio, CIGWELD Victor Technologies
- Matt Stafford, Capability Resources
- Nathan Thompson, Capability Resources

WTIA is the Australian Member Society of the International Institute of Welding (IIW) and the work of Panel 9 links with IIW Commission VIII Health, safety and environment.

Latest Revision
The Technical Note is a revision of the Fourth Edition published in 2004. It will be subject to further revisions from time to time and:
- Is designed to give practical guidance and the latest information available from a wide range of research and experience related to safety and health in welding and allied operations
- Is presented in a form which gives positive guidance on safe practice together with a brief explanation for such practices
- Is intended to assist all engaged in welding and allied processes, ranging from trainee-welders to senior management in industry and Governments

Significant changes from the previous edition include:
- Chapter 3 – Principles of Safe Working: Inclusion of guidelines on conducting a hazard identification and risk assessment including hierarchy of control, isolation and control effectiveness
- Chapter 4 – Electric arc Welding, Cutting and Gouging: Updated and expanded with more detailed descriptions of Category A, B and C environments, a revised Table 4.2 showing requirements for observers in Category B and C environments, information on welding power source types, welding power source IP rating, requirements for electrode holders, and safe installation, maintenance and use of arc welding, arc cutting and arc gouging equipment
- Chapter 5 – Gas Welding, Flame Cutting, Flame Gouging and Gas in Cylinders: Updated and expanded with new charts showing flammability concentration limits in air and oxygen, guidance on hose lengths, flashback arresters, other safety devices, cylinder trolleys, correct assembly of components, acetylene cylinder draw rates and location and positioning of cylinders
- Chapter 12 – Heat Treatment Processes: Electrical heating expanded and new information on thermal distortion and hazards associated with gas and electric heating processes
- Chapter 14 – Electrical Shock: Information on the risk of shock and choice of welding process expanded with more specific details of particular processes, and further informational on critical OCV tabulated and more detailed information on hazard reducing devices
- Chapter 16 – Fire and Explosion Protection: Extensively updated with the addition of information on the triangle of fire, hot-work and hazardous areas, responsible officer and fire watch duties
• Chapter 17 – Fume and Ventilation: Updating of welding fume concentration information and inclusion of Permissible Exposure Limits and other measures
• Chapter 19 – Personal Protective Equipment: Discussion of the hierarchy of control, updating of information on a range of PPE and inclusion of the effects of moisture on electrical conductivity
• Chapter 20 – Welding and Cutting in Confined Spaces: Updated with added information on identifying a confined space and electric shock, and new information on atmospheric testing and monitoring
• Chapter 21 – Welding and Cutting in or on Containments: Revision of non-flammable gas purging (inerting) and new table (21.1) on typical values for a variety of flammable species
• Chapter 28 – Welding and Cutting in Machines and Special Locations: New information on typical duties during isolation
• New Chapter 30 on WHS Case Studies
• Appendices revised, with the inclusion of conversion factors, updated Statutory Authority details and a typical form of a Hot-Work Permit as well as an example of a Confined Space Entry Permit

Acknowledgments

WTIA wishes to acknowledge the contribution of its members, members of WTIA Technical Panels and Committees, ICIP Consortium Members, WTIA SMART Industry Groups and all those in industry who have contributed in various ways to the development of this Expert Technology Tool.

Particular acknowledgment for valuable help and guidance is given to the members of the above Technical Panel with special mention of the work of Prof John Norrish, Panel Chairman Carl Russell and Wayne Morris of TeSuCo Pty Ltd.

This document was technically edited by Glen Allan, and edited and published by Anne Rorke of the WTIA and Chris Burns of A for Art Pty Ltd.

Disclaimer

While every effort has been made and all reasonable care taken to ensure the accuracy of the material contained herein, the authors, editors and publishers of this publication shall not be held to be liable or responsible in any way whatsoever and expressly disclaim any liability or responsibility for any loss or damage costs or expenses howsoever incurred by any person whether the purchaser of this work or otherwise including but without in any way limiting any loss or damage costs or expenses incurred as a result of or in connection with the reliance whether whole or partial by any person as aforesaid upon any part of the contents of this Expert Technology Tool.

Should expert assistance be required, the services of a competent professional person should be sought.

© Copyright 2013

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without written permission from the Welding Technology Institute of Australia, PO Box 6165, Silverwater, NSW, Australia 1811

What are they?
An Expert Technology Tool (ETT) is a medium for diffusion and take-up of technological information based on global research and development (R&D) and experience to improve industry performance.

It can be formatted as a hard copy, software (fixed, interactive or modifiable), audiovisual (videos and sound tapes) or physical samples. It can be complemented by face-to-face interaction, on-site and remote assistance, training modules and auditing programs.

The diagram overleaf and the information below show how the WTIA has introduced a group of ETTs to help companies improve their performance.

ETTs and the SME – how can they help my Total Welding Management System?
A Total Welding Management System (TWMS) is a major ETT with supporting ETTs created specifically to assist Australian industry, particularly those Small to Medium Enterprises (SMEs) that do not have the time or finance to develop an in-house system. These companies, however, are still bound by legal requirements for compliance in many areas such as WHS, either due to government regulation or to contract requirements. The TWMS developed by the WTIA can be tailor-made by SMEs to suit any size and scope of operation, and implemented in full or in part as required.

What is Total Welding Management?
Total Welding Management comprises all of the elements shown in the left-hand column of the table shown overleaf. Each of these elements needs to be addressed within any company, large or small, undertaking welding, which wishes to operate efficiently and be competitive in the Australian and overseas markets.

The Total Welding Management System Manual (itself an Expert Technology Tool) created by the WTIA with the assistance of industry and organisations represented within a Technology Expert Group, overviews each of these elements in the left-hand column. It details how each element relates to effective welding management, refers to supporting welding-related ETTs, or, where the subject matter is out of the range of expertise of the authors, refers the user to external sources such as accounting or legal expertise.

Knowledge Resource Bank
The other columns on the diagram overleaf list the Knowledge Resource Bank and show examples of supporting ETTs which may, or may not, be produced directly by the WTIA. The aim, however, is to assist companies to access this knowledge and to recognise the role that knowledge plays in a Total Welding Management System. These supporting ETTs may take any form, such as a Management System e.g. WTIA Occupational Health, Safety and Rehabilitation (OHS&R), a publication e.g. WTIA Technical Note, a video or a Standard through to software, a one-page guidance note or welding procedure.

Clearly, ETTs such as WTIA Technical Notes, various Standards, software, videos etc. are readily available to industry.

The group of ETTs shown overleaf relate to a general welding fabricator/contractor. The ETT group can be tailor-made to suit any specific company or industry sector.

A company specific Knowledge Resource Bank can be made by the company adding, omitting or replacing any element shown in the left hand column or ETT or Standard shown in the other columns. This approach links in with industry needs already identified by existing WTIA SMART Industry Groups in the Pipeline, Petrochemical and Power Generation sectors. Members of these groups have already highlighted the common problem of industry knowledge loss through downsizing, outsourcing and privatisation and are looking for ways to address this problem.

The concept of industry specific Total Welding Management Systems and Knowledge Resource Banks will be extended based on the results of industry needs analyses being currently conducted. The resources within the Bank will be expanded with the help of Technology Expert Groups including WTIA Technical Panels. Information needs will be identified for the specific industry sectors, existing resources located either within Australia or overseas if otherwise unavailable, and if necessary, new resources will be created to satisfy these needs.

How to Access ETTs
Management System ETTs, whether they are the Total Welding Management Manual (which includes the Quality Manual), OHS&R Managers Handbook, Procedures, Work Instructions, Forms and Records or Environmental Improvement System, can be accessed and implemented in a variety of ways. They can be:

- Purchased as a publication for use by industry. They may augment existing manuals, targeting the welding operation of the company, or they may be implemented from scratch by competent personnel employed by the company;
- Accessed as course notes when attending a public workshop explaining the ETT;
- Accessed as course notes when attending an in-house workshop explaining the ETT;
- Purchased within a package which includes training and on-site implementation assistance from qualified WTIA personnel;
- Accessed during face-to-face consultation.
- Downloaded from the WTIA website www.wtia.com.au

ETTs created by the WTIA are listed in the back of this WTIA Technical Note. Call the WTIA on 02 8748 0100 or the Welding Hotline on 1800 620 820 for further information.
TOTAL WELDING MANAGEMENT SYSTEM supported by KNOWLEDGE RESOURCE BANK

TOTAL WELDING MANAGEMENT SYSTEM MANUAL
ETT: MS01 (Including Welding Quality Management System)

KNOWLEDGE RESOURCE BANK
i.e. resources for the Total Welding Management System (Notes 1 and 2)

ETTs: MANAGEMENT SYSTEMS

ETTs: OTHER RESOURCES

ETTs: STANDARDS

ELEMENTS:

1. Introduction
2. References
3. Management System
4. Management Responsibilities (incl. Risk Management)
5. Document Control
6. Production Planning
7. Contracts
8. Design
9. Purchasing (incl. Sub-Contracting)
10. Production and Service Operations
11. Identification and Traceability
12. Welding Coordination
13. Production Personnel
14. Production Equipment
15. Production Procedures
16. Welding Consumables
17. Heat Treatment
18. Inspection and Testing
19. Inspection, Measuring and Test Equipment
20. Non-Conforming Product
21. Corrective Action
22. Storage, Packing and Delivery
23. Company Records
24. Auditing
25. Human Resources
26. Facilities
27. Marketing
28. Finance
29. WHS
30. Environment
31. Information Technology
32. Innovation, Research and Development
33. Security
34. Legal

Notes:
1. Examples of ETTs listed are not all-embracing and other ETTs within the global information supply can be added.
2. Dates and titles for the ETTs listed can be obtained from WTiA or SAI.

(viii)
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Scope</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Accidents and Occupational Diseases among Cutting and Welding Personnel</td>
<td>2</td>
</tr>
<tr>
<td>2.1.1 Work Conditions in Different Production Areas</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Mechanisation and Automation of Welding</td>
<td>2</td>
</tr>
<tr>
<td>2.3 Productivity and Environment</td>
<td>3</td>
</tr>
<tr>
<td>2.3.1 New Production Systems</td>
<td>3</td>
</tr>
<tr>
<td>2.3.2 Purchase of Production Machines and Welding Equipment to Improve Process Performance</td>
<td>3</td>
</tr>
<tr>
<td>2.3.3 Ergonomics on the Production Floor</td>
<td>3</td>
</tr>
<tr>
<td>2.3.4 Competence Training and Management for Welding</td>
<td>3</td>
</tr>
<tr>
<td>2.3.5 Access for Maintenance</td>
<td>4</td>
</tr>
<tr>
<td>3. Principles of Safe Working</td>
<td>5</td>
</tr>
<tr>
<td>3.1 Basic Objective</td>
<td>5</td>
</tr>
<tr>
<td>3.2 Work Health and Safety</td>
<td>5</td>
</tr>
<tr>
<td>3.3 Hazard Identification and Risk Assessment</td>
<td>5</td>
</tr>
<tr>
<td>3.4 Common Hazards of Cutting and Welding</td>
<td>5</td>
</tr>
<tr>
<td>3.5 Guidelines on Conducting a Hazard Identification and Risk Assessment</td>
<td>6</td>
</tr>
<tr>
<td>3.5.1 Hazard Identification</td>
<td>6</td>
</tr>
<tr>
<td>3.5.2 Risk Assessment</td>
<td>6</td>
</tr>
<tr>
<td>3.5.3 Control Measures to Reduce Initial Risk</td>
<td>7</td>
</tr>
<tr>
<td>3.5.4 Risk After Intended Controls and Actions</td>
<td>7</td>
</tr>
<tr>
<td>3.5.5 Action Required</td>
<td>7</td>
</tr>
<tr>
<td>3.5.6 Person Responsible</td>
<td>7</td>
</tr>
<tr>
<td>3.5.7 Scheduled Completion Date</td>
<td>7</td>
</tr>
<tr>
<td>3.6 Safe Working Practices</td>
<td>7</td>
</tr>
<tr>
<td>3.7 Responsibility for Health and Safety</td>
<td>7</td>
</tr>
<tr>
<td>3.8 Work Health and Safety Policy</td>
<td>7</td>
</tr>
<tr>
<td>3.9 Work Health and Safety Programme</td>
<td>8</td>
</tr>
<tr>
<td>3.10 Hierarchy of Control</td>
<td>8</td>
</tr>
<tr>
<td>3.10.1 Elimination</td>
<td>8</td>
</tr>
<tr>
<td>3.10.2 Substitution</td>
<td>8</td>
</tr>
<tr>
<td>3.10.3 Isolation</td>
<td>8</td>
</tr>
<tr>
<td>3.10.4 Engineering Controls</td>
<td>8</td>
</tr>
<tr>
<td>3.10.5 Administrative Controls</td>
<td>8</td>
</tr>
<tr>
<td>3.11 Personal Protective Equipment</td>
<td>8</td>
</tr>
<tr>
<td>3.12 Energy Isolation</td>
<td>8</td>
</tr>
<tr>
<td>3.12.1 Provision of Isolation Equipment</td>
<td>9</td>
</tr>
<tr>
<td>3.12.2 Isolation Planning</td>
<td>9</td>
</tr>
<tr>
<td>3.12.3 Performing Isolations</td>
<td>9</td>
</tr>
<tr>
<td>3.12.3.1 Individual Isolations</td>
<td>9</td>
</tr>
<tr>
<td>3.12.3.2 Group Isolations</td>
<td>9</td>
</tr>
<tr>
<td>3.12.3.3 Working Alone Isolations</td>
<td>9</td>
</tr>
<tr>
<td>3.12.4 Protected Persons Working Under an Isolation</td>
<td>10</td>
</tr>
<tr>
<td>3.13 Control Effectiveness</td>
<td>10</td>
</tr>
<tr>
<td>3.14 Safe Working by Personnel Exposed To Hot-Work</td>
<td>10</td>
</tr>
</tbody>
</table>
Contents

4. Electric Arc Welding, Cutting and Gouging .. 11
 4.1 Introduction ... 11
 4.2 Basic Requirements of Electrical Equipment 11
 4.3 Welding Power Sources ... 11
 4.3.1 Types of Welding Power Sources or Welding Machines 11
 4.4 Risk of Electrocution ... 11
 4.4.1 Inverter Power Sources .. 13
 4.4.2 Compliance ... 14
 4.4.3 Open Circuit Voltage or No-Load Voltage 14
 4.4.4 High Frequency Equipment .. 14
 4.4.5 Service Conditions ... 14
 4.4.6 Welding Power Source Loading 15
 4.4.7 Installation, Operation and Maintenance 15
 4.5 Wire Feeders ... 16
 4.6 Welding Cables .. 16
 4.6.1 General ... 16
 4.6.2 Cable Connections ... 17
 4.6.3 Work Cable ... 17
 4.6.4 Inspection .. 18
 4.7 Electrode Holders .. 18
 4.7.1 Type A Electrode Holder ... 18
 4.7.2 Type B Electrode Holder ... 18
 4.7.3 Protection Against Electric Shock 18
 4.7.3.1 Protection From Direct Contact 18
 4.7.3.2 Insulation Resistance .. 18
 4.7.3.3 Dielectric Strength .. 18
 4.7.4 Dimensional Requirements for an Electrode Holder 18
 4.7.5 Marking ... 18
 4.7.6 Electrode Gripping/Clamping Action 18
 4.7.7 Cable, Anchorage and Connection 19
 4.7.8 Routine Inspection .. 19
 4.7.9 Use ... 19
 4.8 Welding Torches and Guns .. 19
 4.9 Shielding Gas Cylinders and Pressure Hose 19
 4.10 Safe Installation, Maintenance and Use of Arc Welding,
 Arc Cutting and Air-Arc Gouging Equipment 19
 4.10.1 Management ... 19
 4.10.2 Installation and Handling of Equipment
 Connected to Electrical Supply ... 20
 4.10.3 Installation and Handling of Engine Driven Equipment 20
 4.10.4 Maintenance and Inspection by Maintenance Personnel 20
 4.10.5 Safe Operation by Welders and Operators 20
 4.10.5.1 Pre-Start Inspection of Welding Equipment 20
 4.10.5.2 Safe Working Practices by Welders
 and Operators .. 21
 4.10.6 Further Information ... 22

5. Gas Welding, Flame Cutting, Flame Gouging and Gas in Cylinders.... 23
 5.1 Introduction ... 23
 5.2 Gas Properties and Particular Hazards 23
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.1 Gases Used</td>
<td>23</td>
</tr>
<tr>
<td>5.2.2 Oxygen</td>
<td>25</td>
</tr>
<tr>
<td>5.2.3 Fuel Gases</td>
<td>25</td>
</tr>
<tr>
<td>5.2.3.1 Acetylene</td>
<td>25</td>
</tr>
<tr>
<td>5.2.3.2 Liquefied Petroleum Gas (LPG)</td>
<td>27</td>
</tr>
<tr>
<td>5.2.3.3 Natural gas</td>
<td>27</td>
</tr>
<tr>
<td>5.2.3.4 Hydrogen</td>
<td>27</td>
</tr>
<tr>
<td>5.2.4 Shielding Gases</td>
<td>27</td>
</tr>
<tr>
<td>5.3 Gas Supply</td>
<td>27</td>
</tr>
<tr>
<td>5.3.1 General</td>
<td>27</td>
</tr>
<tr>
<td>5.3.2 Bulk Gas Supply</td>
<td>28</td>
</tr>
<tr>
<td>5.3.3 Cylinder Types and General Care</td>
<td>28</td>
</tr>
<tr>
<td>5.3.3.1 Oxygen Cylinders</td>
<td>28</td>
</tr>
<tr>
<td>5.3.3.2 Acetylene Cylinders</td>
<td>29</td>
</tr>
<tr>
<td>5.3.3.3 LPG Cylinders</td>
<td>29</td>
</tr>
<tr>
<td>5.3.3.4 Shielding Gas Cylinders</td>
<td>29</td>
</tr>
<tr>
<td>5.3.4 Cylinder Storage, Transport, Handling and Use</td>
<td>29</td>
</tr>
<tr>
<td>5.3.4.1 Storage</td>
<td>29</td>
</tr>
<tr>
<td>5.3.4.2 Transport – General</td>
<td>30</td>
</tr>
<tr>
<td>5.3.4.3 Transport – Low Headroom</td>
<td>30</td>
</tr>
<tr>
<td>5.3.4.4 Handling</td>
<td>30</td>
</tr>
<tr>
<td>5.3.4.5 Cylinder Use</td>
<td>30</td>
</tr>
<tr>
<td>5.3.4.6 Connection to Regulators and Hoses</td>
<td>31</td>
</tr>
<tr>
<td>5.3.5 Piping and Manifolds</td>
<td>31</td>
</tr>
<tr>
<td>5.3.6 Portable and Mobile Cylinder Supply</td>
<td>31</td>
</tr>
<tr>
<td>5.3.6.1 Storage</td>
<td>31</td>
</tr>
<tr>
<td>5.4 Equipment Specifications and Assembly</td>
<td>31</td>
</tr>
<tr>
<td>5.4.1 General</td>
<td>31</td>
</tr>
<tr>
<td>5.4.2 Pressure Regulators and Gauges</td>
<td>32</td>
</tr>
<tr>
<td>5.4.2.1 Static Increment</td>
<td>32</td>
</tr>
<tr>
<td>5.4.2.2 Gauge Indication at Zero Pressure</td>
<td>32</td>
</tr>
<tr>
<td>5.4.3 Hoses and Fittings</td>
<td>33</td>
</tr>
<tr>
<td>5.4.3.1 Requirements</td>
<td>33</td>
</tr>
<tr>
<td>5.4.3.2 Colour Coding</td>
<td>33</td>
</tr>
<tr>
<td>5.4.3.3 Location</td>
<td>33</td>
</tr>
<tr>
<td>5.4.3.4 Fittings</td>
<td>33</td>
</tr>
<tr>
<td>5.4.3.5 Length and Diameter</td>
<td>33</td>
</tr>
<tr>
<td>5.4.4 Blowpipes and Mixers</td>
<td>34</td>
</tr>
<tr>
<td>5.4.4.1 Requirements for Blowpipes</td>
<td>34</td>
</tr>
<tr>
<td>5.4.5 Tips, Nozzles and their Attachment Fittings</td>
<td>35</td>
</tr>
<tr>
<td>5.4.6 Safety Devices</td>
<td>35</td>
</tr>
<tr>
<td>5.4.6.1 Requirements</td>
<td>35</td>
</tr>
<tr>
<td>5.4.6.2 Non-return Valve</td>
<td>35</td>
</tr>
<tr>
<td>5.4.6.3 Flame Arrester</td>
<td>35</td>
</tr>
<tr>
<td>5.4.6.4 Flashback Arrester</td>
<td>35</td>
</tr>
<tr>
<td>5.4.6.5 Fitment of Safety Devices</td>
<td>35</td>
</tr>
<tr>
<td>5.4.6.6 Flow Capacity and Operating Pressure</td>
<td>36</td>
</tr>
<tr>
<td>5.4.6.7 Maintenance of Safety Devices</td>
<td>36</td>
</tr>
<tr>
<td>5.4.7 Personal Protective Equipment (PPE)</td>
<td>36</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.8 Cylinder Trolleys</td>
<td>36</td>
</tr>
<tr>
<td>5.4.9 System Assembly</td>
<td>36</td>
</tr>
<tr>
<td>5.4.9.1 General Compatibility</td>
<td>36</td>
</tr>
<tr>
<td>5.4.9.2 Fuel Gas</td>
<td>37</td>
</tr>
<tr>
<td>5.4.9.3 Flow Capacity</td>
<td>37</td>
</tr>
<tr>
<td>5.5 Setting Up Plant Safely</td>
<td>38</td>
</tr>
<tr>
<td>5.5.1 Acetylene Draw-Off Rates</td>
<td>38</td>
</tr>
<tr>
<td>5.5.2 Safe Equipment</td>
<td>38</td>
</tr>
<tr>
<td>5.5.2.1 Safety Devices</td>
<td>38</td>
</tr>
<tr>
<td>5.5.2.2 Cylinders</td>
<td>38</td>
</tr>
<tr>
<td>5.5.2.3 Location of Cylinders</td>
<td>38</td>
</tr>
<tr>
<td>5.5.3 Training</td>
<td>38</td>
</tr>
<tr>
<td>5.5.4 Rules and Instructions</td>
<td>38</td>
</tr>
<tr>
<td>5.5.5 System Operation</td>
<td>38</td>
</tr>
<tr>
<td>5.5.5.1 Leak testing</td>
<td>38</td>
</tr>
<tr>
<td>5.5.5.2 Purging</td>
<td>38</td>
</tr>
<tr>
<td>5.5.5.3 Lighting</td>
<td>38</td>
</tr>
<tr>
<td>5.5.5.4 Work Interruption</td>
<td>38</td>
</tr>
<tr>
<td>5.5.6 Equipment Inspection and Maintenance</td>
<td>39</td>
</tr>
<tr>
<td>5.5.6.1 Inspection</td>
<td>39</td>
</tr>
<tr>
<td>5.5.6.2 Maintenance</td>
<td>39</td>
</tr>
<tr>
<td>5.5.6.3 Detailed Inspection and Maintenance</td>
<td>39</td>
</tr>
<tr>
<td>5.5.7 Flame Cutting and Ancillary Equipment</td>
<td>39</td>
</tr>
<tr>
<td>5.6 Emergencies and Incidents</td>
<td>40</td>
</tr>
<tr>
<td>5.6.1 Backfires and Flashback</td>
<td>40</td>
</tr>
<tr>
<td>5.6.2 Gas Leaks</td>
<td>40</td>
</tr>
<tr>
<td>5.6.3 Ignition of Oxygen Regulators, Hoses and other High Pressure Equipment</td>
<td>40</td>
</tr>
<tr>
<td>5.6.4 Cylinders in Fires</td>
<td>40</td>
</tr>
<tr>
<td>5.6.5 Acetylene Cylinder Overheating</td>
<td>41</td>
</tr>
<tr>
<td>5.6.6 Oxygen Cylinder Explosions</td>
<td>43</td>
</tr>
<tr>
<td>6. Plasma Arc Welding and Cutting</td>
<td>44</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>44</td>
</tr>
<tr>
<td>6.2 Process Features</td>
<td>44</td>
</tr>
<tr>
<td>6.3 Electric Shock</td>
<td>45</td>
</tr>
<tr>
<td>6.4 Noise</td>
<td>45</td>
</tr>
<tr>
<td>6.5 Arc Radiation (Non-ionising)</td>
<td>46</td>
</tr>
<tr>
<td>6.6 Noxious Gases</td>
<td>46</td>
</tr>
<tr>
<td>6.6.1 Production of Gases</td>
<td>46</td>
</tr>
<tr>
<td>6.6.2 Recommendations</td>
<td>46</td>
</tr>
<tr>
<td>6.7 Fume</td>
<td>46</td>
</tr>
<tr>
<td>6.8 Dusts</td>
<td>46</td>
</tr>
<tr>
<td>7. Resistance Welding</td>
<td>47</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>47</td>
</tr>
<tr>
<td>7.2 Manufacture and Installation of Resistance Welding Equipment</td>
<td>47</td>
</tr>
<tr>
<td>7.2.1 Electrical Safety</td>
<td>47</td>
</tr>
<tr>
<td>7.2.2 Mechanical Safety</td>
<td>47</td>
</tr>
<tr>
<td>7.3 Location of Equipment</td>
<td>47</td>
</tr>
<tr>
<td>7.4 Personal Protective Equipment</td>
<td>47</td>
</tr>
</tbody>
</table>

(xii)
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.</td>
<td>Special Welding Processes</td>
<td>49</td>
</tr>
<tr>
<td>8.1</td>
<td>Aluminothermic Welding</td>
<td>49</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Aluminothermic Process</td>
<td>49</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Applications</td>
<td>49</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Precautions</td>
<td>49</td>
</tr>
<tr>
<td>8.2</td>
<td>Laser Welding and Cutting</td>
<td>50</td>
</tr>
<tr>
<td>8.3</td>
<td>Electron Beam Welding</td>
<td>50</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Process</td>
<td>50</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Precautions</td>
<td>50</td>
</tr>
<tr>
<td>8.4</td>
<td>Electroslag Welding and Consumable Guide Welding</td>
<td>51</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Process</td>
<td>51</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Precautions</td>
<td>51</td>
</tr>
<tr>
<td>8.5</td>
<td>Explosive Welding</td>
<td>52</td>
</tr>
<tr>
<td>8.6</td>
<td>Friction Welding</td>
<td>52</td>
</tr>
<tr>
<td>8.6.1</td>
<td>Friction Stir Welding</td>
<td>52</td>
</tr>
<tr>
<td>9.</td>
<td>Brazing and Soldering</td>
<td>53</td>
</tr>
<tr>
<td>9.1</td>
<td>Brazing and Soldering Processes</td>
<td>53</td>
</tr>
<tr>
<td>9.2</td>
<td>Brazing Hazards</td>
<td>53</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Fluxes</td>
<td>53</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Filler Metals</td>
<td>54</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Explosion and Fire</td>
<td>54</td>
</tr>
<tr>
<td>9.2.3.1</td>
<td>Possible Sources</td>
<td>54</td>
</tr>
<tr>
<td>9.2.3.2</td>
<td>Flame and Gas Heating</td>
<td>54</td>
</tr>
<tr>
<td>9.2.3.3</td>
<td>Brazing Atmospheres</td>
<td>54</td>
</tr>
<tr>
<td>9.2.3.4</td>
<td>Nitrate and Nitrite Salt Baths</td>
<td>54</td>
</tr>
<tr>
<td>9.3</td>
<td>Soldering Hazards</td>
<td>54</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Toxic Fume and Salts</td>
<td>54</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Safety Precaution for Fluxes</td>
<td>55</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Toxic Fume from Solder</td>
<td>56</td>
</tr>
<tr>
<td>9.3.4</td>
<td>Fire Hazard – Rosin Based (Safety) Fluxes</td>
<td>56</td>
</tr>
<tr>
<td>9.4</td>
<td>Electrical Hazards</td>
<td>56</td>
</tr>
<tr>
<td>9.5</td>
<td>Eye Injuries</td>
<td>56</td>
</tr>
<tr>
<td>9.6</td>
<td>Cleaning Hazards</td>
<td>56</td>
</tr>
<tr>
<td>9.7</td>
<td>Burns to Body</td>
<td>56</td>
</tr>
<tr>
<td>10.</td>
<td>Metal Preparation Processes</td>
<td>57</td>
</tr>
<tr>
<td>10.1</td>
<td>The Need for Metal Preparation</td>
<td>57</td>
</tr>
<tr>
<td>10.2</td>
<td>Metal Cleaning Processes</td>
<td>57</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Chemical</td>
<td>57</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Physical</td>
<td>57</td>
</tr>
<tr>
<td>10.3</td>
<td>Precautions with Preparation Processes</td>
<td>57</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Chemical Treatments</td>
<td>57</td>
</tr>
<tr>
<td>10.3.1.1</td>
<td>Caustic Solution Cleaning</td>
<td>57</td>
</tr>
<tr>
<td>10.3.1.2</td>
<td>Acid Solution Cleaning</td>
<td>58</td>
</tr>
<tr>
<td>10.3.1.3</td>
<td>Pickling and Passivation pastes</td>
<td>58</td>
</tr>
<tr>
<td>10.3.1.4</td>
<td>Degreasing Chemicals</td>
<td>58</td>
</tr>
<tr>
<td>10.3.1.5</td>
<td>Solvent Paint Strippers and Removers</td>
<td>58</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Physical Treatments</td>
<td>58</td>
</tr>
<tr>
<td>10.3.2.1</td>
<td>Abrasive Plate Descaling and Cleaning</td>
<td>59</td>
</tr>
<tr>
<td>10.3.2.2</td>
<td>Mechanical Edge Preparation</td>
<td>59</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3.2.3</td>
<td>Grinding and Abrasive Disc Cutting</td>
<td>59</td>
</tr>
<tr>
<td>10.3.2.4</td>
<td>De-slagging, Chipping, Chiselling and Peening</td>
<td>59</td>
</tr>
<tr>
<td>10.3.2.5</td>
<td>Flame Cleaning</td>
<td>59</td>
</tr>
<tr>
<td>10.4</td>
<td>Coated Metals</td>
<td>59</td>
</tr>
<tr>
<td>10.5</td>
<td>Contaminated Surfaces</td>
<td>59</td>
</tr>
<tr>
<td>10.6</td>
<td>Metal Preparation in Special Locations</td>
<td>59</td>
</tr>
<tr>
<td>11.</td>
<td>Metal Spraying</td>
<td>60</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>60</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Basic Compounds</td>
<td>60</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Hazards to Health</td>
<td>60</td>
</tr>
<tr>
<td>11.2</td>
<td>Surface Preparation</td>
<td>60</td>
</tr>
<tr>
<td>11.3</td>
<td>Gas Fire and Explosion</td>
<td>60</td>
</tr>
<tr>
<td>11.4</td>
<td>Dust Fire and Explosion</td>
<td>60</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Need for Precaution</td>
<td>60</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Flammable Metal Dusts</td>
<td>60</td>
</tr>
<tr>
<td>11.4.3</td>
<td>Self-Burning Dust Mixtures</td>
<td>61</td>
</tr>
<tr>
<td>11.4.4</td>
<td>Collection of Metal Dusts</td>
<td>61</td>
</tr>
<tr>
<td>11.4.5</td>
<td>Prevention of Dust Fire and Explosion</td>
<td>62</td>
</tr>
<tr>
<td>11.5</td>
<td>Health of Operators</td>
<td>62</td>
</tr>
<tr>
<td>11.6</td>
<td>Personal Protective Equipment</td>
<td>62</td>
</tr>
<tr>
<td>11.7</td>
<td>Metal Spraying Guns</td>
<td>62</td>
</tr>
<tr>
<td>11.8</td>
<td>Spray Booths</td>
<td>62</td>
</tr>
<tr>
<td>12.</td>
<td>Heat Treatment Processes</td>
<td>63</td>
</tr>
<tr>
<td>12.1</td>
<td>Type of Process</td>
<td>63</td>
</tr>
<tr>
<td>12.2</td>
<td>Hazards63</td>
<td>63</td>
</tr>
<tr>
<td>12.3</td>
<td>Flame Heating</td>
<td>63</td>
</tr>
<tr>
<td>12.4</td>
<td>Electrical Heating</td>
<td>63</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Resistance Heating Elements</td>
<td>64</td>
</tr>
<tr>
<td>12.5</td>
<td>Thermal Distortion</td>
<td>64</td>
</tr>
<tr>
<td>13.</td>
<td>Precautions with Various Materials</td>
<td>65</td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>65</td>
</tr>
<tr>
<td>14.</td>
<td>Electric Shock</td>
<td>68</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>68</td>
</tr>
<tr>
<td>14.2</td>
<td>Factors Affecting Severity of Electric Shock</td>
<td>68</td>
</tr>
<tr>
<td>14.3</td>
<td>Electricity Supply to the Welding Power Source and Ancillary Equipment</td>
<td>68</td>
</tr>
<tr>
<td>14.4</td>
<td>Risk of Shock and Choice of Welding Process</td>
<td>69</td>
</tr>
<tr>
<td>14.4.1</td>
<td>Resistance Welding</td>
<td>69</td>
</tr>
<tr>
<td>14.4.2</td>
<td>Manual Metal Arc Welding (MMAW) and Carbon Air-Arc Gouging (CAG)</td>
<td>69</td>
</tr>
<tr>
<td>14.4.3</td>
<td>Gas Tungsten Arc Welding (GTAW)</td>
<td>69</td>
</tr>
<tr>
<td>14.4.4</td>
<td>Gas Metal Arc Welding (GMAW) and Flux Cored Arc Welding (FCAW)</td>
<td>70</td>
</tr>
<tr>
<td>14.4.5</td>
<td>Submerged Arc Welding (SAW) and Electroslag Welding (ESW)</td>
<td>70</td>
</tr>
<tr>
<td>14.4.6</td>
<td>Plasma Arc Welding (PAW) and Plasma Cutting</td>
<td>70</td>
</tr>
<tr>
<td>14.5</td>
<td>Avoiding the Risk of Electrocution in Manual Welding</td>
<td>70</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>16.3 Dust and Fires in Explosions</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3.1 Hazardous Dusts</td>
<td>79</td>
</tr>
<tr>
<td>16.3.2 Prevention of Dust Explosions or Fires</td>
<td>79</td>
</tr>
<tr>
<td>16.3.3 Ventilation Ducting</td>
<td>80</td>
</tr>
<tr>
<td>16.3.4 Fighting Dust Fires</td>
<td>80</td>
</tr>
<tr>
<td>16.4 Location of Hot-Work</td>
<td>80</td>
</tr>
<tr>
<td>16.4.1 Designated Hot-Work Area</td>
<td>80</td>
</tr>
<tr>
<td>16.4.2 Hazardous Areas</td>
<td>80</td>
</tr>
<tr>
<td>16.5 Fire Protection</td>
<td>81</td>
</tr>
<tr>
<td>16.5.1 Fire Extinguishers</td>
<td>81</td>
</tr>
<tr>
<td>16.5.2 Firewatchers</td>
<td>81</td>
</tr>
<tr>
<td>16.5.3 Fire Watch Duties</td>
<td>81</td>
</tr>
<tr>
<td>16.6 Responsibility for Fire Protection</td>
<td>81</td>
</tr>
<tr>
<td>16.6.1 Responsible Officer</td>
<td>81</td>
</tr>
<tr>
<td>16.6.2 Welders and Other Workers</td>
<td>82</td>
</tr>
<tr>
<td>16.6.3 Firewatchers</td>
<td>82</td>
</tr>
<tr>
<td>16.7 Hot-Work Permits</td>
<td>82</td>
</tr>
<tr>
<td>16.7.1 Hazard Identification, Risk Assessment and Risk Management</td>
<td>82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Fume and Ventilation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1 Introduction</td>
<td>83</td>
</tr>
<tr>
<td>17.2 Fume</td>
<td>83</td>
</tr>
<tr>
<td>17.3 Formation of Fume</td>
<td>83</td>
</tr>
<tr>
<td>17.4 The Constituents of Welding Fume</td>
<td>83</td>
</tr>
<tr>
<td>17.5 Welding Fume Concentrations</td>
<td>84</td>
</tr>
<tr>
<td>17.5.1 Exposure Standards</td>
<td>84</td>
</tr>
<tr>
<td>17.5.1.1 National Exposure Standards</td>
<td>84</td>
</tr>
<tr>
<td>17.5.1.2 Time Weighted Average (TWA)</td>
<td>84</td>
</tr>
<tr>
<td>17.5.1.3 Short Term Exposure Limit (STEL)</td>
<td>84</td>
</tr>
<tr>
<td>17.5.1.4 Ceiling Limit</td>
<td>84</td>
</tr>
<tr>
<td>17.5.2 Optimising welding conditions</td>
<td>84</td>
</tr>
<tr>
<td>17.6 Measurement of Fume</td>
<td>84</td>
</tr>
<tr>
<td>17.6.1 Units of Measure</td>
<td>84</td>
</tr>
<tr>
<td>17.6.2 Personal Sampling of Gaseous Fume</td>
<td>84</td>
</tr>
<tr>
<td>17.7 Control of Fume</td>
<td>85</td>
</tr>
<tr>
<td>17.8 Ventilation</td>
<td>85</td>
</tr>
<tr>
<td>17.8.1 Necessity for Ventilation</td>
<td>85</td>
</tr>
<tr>
<td>17.8.2 Selection of Ventilation Method</td>
<td>85</td>
</tr>
<tr>
<td>17.8.3 Local Exhaust Ventilation</td>
<td>85</td>
</tr>
<tr>
<td>17.8.4 Mechanical Dilution Ventilation</td>
<td>86</td>
</tr>
<tr>
<td>17.8.5 Natural Ventilation</td>
<td>87</td>
</tr>
<tr>
<td>17.9 Ventilation for Particular Processes</td>
<td>87</td>
</tr>
<tr>
<td>17.9.1 Gas Welding, Flame Cutting and Gouging Processes...</td>
<td>87</td>
</tr>
<tr>
<td>17.9.2 Manual Metal Arc Welding (MMAW)</td>
<td>87</td>
</tr>
<tr>
<td>17.9.3 Flux-Cored Arc Welding (FCAW)</td>
<td>87</td>
</tr>
<tr>
<td>17.9.4 Gas Metal Arc Welding (GMAW/MIG/MAG)</td>
<td>87</td>
</tr>
<tr>
<td>17.9.5 Plasma Arc Welding (PAW) and Cutting (PAC)</td>
<td>87</td>
</tr>
<tr>
<td>17.9.6 Gas Tungsten Arc Welding (GTAW/TIG)</td>
<td>87</td>
</tr>
<tr>
<td>17.9.7 Submerged Arc Welding (SAW)</td>
<td>88</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.9.8 Aluminothermic Welding</td>
<td>88</td>
</tr>
<tr>
<td>17.9.9 Carbon Arc-Air Gouging (CAG)</td>
<td>88</td>
</tr>
<tr>
<td>17.10 Materials and Consumables</td>
<td>88</td>
</tr>
<tr>
<td>17.10.1 Source of Fume</td>
<td>88</td>
</tr>
<tr>
<td>17.10.2 Special Materials</td>
<td>88</td>
</tr>
<tr>
<td>17.11 Coated Metals</td>
<td>88</td>
</tr>
<tr>
<td>17.11.1 Hazards</td>
<td>88</td>
</tr>
<tr>
<td>17.11.2 Control Measures</td>
<td>88</td>
</tr>
<tr>
<td>17.12 Metal Preparation Processes</td>
<td>90</td>
</tr>
<tr>
<td>17.12.1 Introduction</td>
<td>90</td>
</tr>
<tr>
<td>17.12.2 Hazard</td>
<td>90</td>
</tr>
<tr>
<td>17.12.3 Precautions</td>
<td>90</td>
</tr>
<tr>
<td>17.13 Contaminated Surfaces</td>
<td>90</td>
</tr>
<tr>
<td>18. Noise Control</td>
<td>93</td>
</tr>
<tr>
<td>18.1 Need for Noise Control</td>
<td>93</td>
</tr>
<tr>
<td>18.2 Effect of Noise on the Ear</td>
<td>93</td>
</tr>
<tr>
<td>18.3 Noise</td>
<td>93</td>
</tr>
<tr>
<td>18.4 Noise Sources</td>
<td>94</td>
</tr>
<tr>
<td>18.5 Detection of Hazardous Noise</td>
<td>94</td>
</tr>
<tr>
<td>18.6 Noise Measurement</td>
<td>94</td>
</tr>
<tr>
<td>18.7 Limits on Noise Exposure</td>
<td>94</td>
</tr>
<tr>
<td>18.8 Noise Control</td>
<td>94</td>
</tr>
<tr>
<td>18.8.1 Control by Elimination and Substitution</td>
<td>94</td>
</tr>
<tr>
<td>18.8.2 Control at the Noise Source</td>
<td>94</td>
</tr>
<tr>
<td>18.8.3 Control of Noise Transmission</td>
<td>94</td>
</tr>
<tr>
<td>18.8.4 Administrative Noise Control</td>
<td>94</td>
</tr>
<tr>
<td>18.8.5 Control Through Personal Protection</td>
<td>94</td>
</tr>
<tr>
<td>18.8.6 Audiometry</td>
<td>95</td>
</tr>
<tr>
<td>18.8.7 Summary</td>
<td>95</td>
</tr>
<tr>
<td>18.9 Vibration</td>
<td>95</td>
</tr>
<tr>
<td>19. Personal Protective Equipment</td>
<td>96</td>
</tr>
<tr>
<td>19.1 Introduction</td>
<td>96</td>
</tr>
<tr>
<td>19.2 Recommended Equipment for Various Processes</td>
<td>96</td>
</tr>
<tr>
<td>19.2.1 Hierarchy of control</td>
<td>96</td>
</tr>
<tr>
<td>19.3 Protection of Eyes and Head</td>
<td>96</td>
</tr>
<tr>
<td>19.3.1 Purpose</td>
<td>96</td>
</tr>
<tr>
<td>19.3.2 Helmets and Hand shields</td>
<td>96</td>
</tr>
<tr>
<td>19.3.2.1 Clear lenses</td>
<td>96</td>
</tr>
<tr>
<td>19.3.3 Protective Goggles</td>
<td>97</td>
</tr>
<tr>
<td>19.3.4 Contact Lenses</td>
<td>97</td>
</tr>
<tr>
<td>19.3.5 Protective Filters</td>
<td>97</td>
</tr>
<tr>
<td>19.3.6 Welding Helmets with Self-Darkening Filters</td>
<td>98</td>
</tr>
<tr>
<td>19.3.7 Welders' Caps</td>
<td>98</td>
</tr>
<tr>
<td>19.4 Protective Clothing for the Body</td>
<td>98</td>
</tr>
<tr>
<td>19.4.1 Purpose</td>
<td>98</td>
</tr>
<tr>
<td>19.4.2 Type of Work Clothing</td>
<td>98</td>
</tr>
<tr>
<td>19.4.3 Gloves</td>
<td>98</td>
</tr>
<tr>
<td>19.4.3.1 Protection Against Mechanical Risks</td>
<td>99</td>
</tr>
<tr>
<td>19.4.3.2 Protection Against Thermal Risks</td>
<td>99</td>
</tr>
<tr>
<td>(Heat and Fire)</td>
<td>99</td>
</tr>
</tbody>
</table>
Contents

19.4.4 Safety Footwear ... 99
19.4.5 Additional Protection .. 99
19.4.6 Clothing Condition ... 99
19.5 Screens and Curtains .. 99
19.6 Respiratory Protection Devices ... 100
 19.6.1 Introduction .. 100
 19.6.2 Respirator Types .. 100
 19.6.3 Selection of Equipment .. 100

20. Welding and Cutting in Confined Spaces 103
 20.1 Introduction ... 103
 20.1.1 Identifying a Confined Space 103
 20.1.2 Atmospheric Hazards and Engulfment Hazards of Confined Spaces ... 103
 20.1.3 Task-Related Hazards and Other Occupational Hazards ... 104
 20.2 Supervision, Permits and Precautions 104
 20.3 Ventilation, Shading and Thermal Insulation 105
 20.3.1 Ventilation ... 105
 20.3.2 Shading .. 105
 20.3.3 Thermal Insulation ... 105
 20.4 Atmospheric Testing and Monitoring 105
 20.4.1 Gas Monitors ... 105
 20.4.2 Challenge Testing .. 105
 20.5 Electric Shock .. 105
 20.6 Flame Cutting, Welding or Preheating 106
 20.7 The Welder ... 106
 20.8 Emergency Removal of Personnel from Confined Space 106
 20.9 Typical Check List ... 106

21. Welding or Cutting In or On Containers 107
 21.1 Introduction ... 107
 21.2 Supervision and Approval .. 107
 21.2.1 Permits .. 107
 21.2.2 Gas Freeing Area .. 107
 21.2.3 Other Considerations .. 107
 21.3 Welding or Cutting Containers That Have Held Combustibles 107
 21.3.1 Introduction ... 107
 21.3.2 Identification of Hazard .. 108
 21.3.3 Basic Precautions ... 108
 21.3.4 Cleaning Procedures for Small Containers 108
 21.3.4.1 Water Washing and Rinsing 108
 21.3.4.2 Hot Chemical Solutions 109
 21.3.4.3 Steaming ... 109
 21.3.5 Water Filling Treatment .. 109
 21.3.6 Non-Flammable Gas Purging – Inerting 110
 21.3.7 Large Vessels, Tanks etc. .. 110
 21.4 Welding on Containers and Piping Under Internal Pressure 111
 21.5 Welding on Closed Sections .. 111
 21.5.1 Purging with Inert Gas ... 111
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22. Welding and Cutting on Pressurised Equipment</td>
<td>112</td>
</tr>
<tr>
<td>22.1 Introduction</td>
<td>112</td>
</tr>
<tr>
<td>22.2 Precautions</td>
<td>112</td>
</tr>
<tr>
<td>22.3 Procedures</td>
<td>112</td>
</tr>
<tr>
<td>23. Welding and Cutting in Hot or Humid Conditions</td>
<td>113</td>
</tr>
<tr>
<td>23.1 Introduction</td>
<td>113</td>
</tr>
<tr>
<td>23.2 Heat Stress</td>
<td>113</td>
</tr>
<tr>
<td>23.2.1 Effects of Heat Stress</td>
<td>113</td>
</tr>
<tr>
<td>23.2.2 Contributing Factors</td>
<td>113</td>
</tr>
<tr>
<td>23.2.3 Minimising Heat Stress</td>
<td>113</td>
</tr>
<tr>
<td>23.3 Extreme Conditions with High Preheat in Confined Space</td>
<td>114</td>
</tr>
<tr>
<td>23.4 Risk of Electrocution</td>
<td>114</td>
</tr>
<tr>
<td>24. Welding in Refineries and Chemical Plants</td>
<td>115</td>
</tr>
<tr>
<td>24.1 Introduction</td>
<td>115</td>
</tr>
<tr>
<td>24.2 Precautions with Toxic or Flammable Liquids or Gases</td>
<td>115</td>
</tr>
<tr>
<td>24.3 Fire Precautions – General</td>
<td>115</td>
</tr>
<tr>
<td>24.4 Plant and Personnel</td>
<td>116</td>
</tr>
<tr>
<td>25. Welding and Cutting at Heights or Underneath Construction</td>
<td>117</td>
</tr>
<tr>
<td>25.1 Introduction</td>
<td>117</td>
</tr>
<tr>
<td>25.2 Electrical Shock</td>
<td>117</td>
</tr>
<tr>
<td>25.3 Head Protection</td>
<td>117</td>
</tr>
<tr>
<td>25.4 Falls or Falling Objects</td>
<td>117</td>
</tr>
<tr>
<td>25.5 Storage of Equipment</td>
<td>117</td>
</tr>
<tr>
<td>25.6 Fire or Burns to Personnel</td>
<td>117</td>
</tr>
<tr>
<td>25.7 Lifting of Equipment</td>
<td>117</td>
</tr>
<tr>
<td>26. Welding and Cutting Underwater and Under Pressure</td>
<td>118</td>
</tr>
<tr>
<td>26.1 Introduction</td>
<td>118</td>
</tr>
<tr>
<td>26.2 Proven Equipment</td>
<td>118</td>
</tr>
<tr>
<td>26.3 Personnel</td>
<td>118</td>
</tr>
<tr>
<td>26.4 Procedures</td>
<td>119</td>
</tr>
<tr>
<td>27. Protection During Weldment Testing</td>
<td>120</td>
</tr>
<tr>
<td>27.1 Introduction</td>
<td>120</td>
</tr>
<tr>
<td>27.2 Radiographic Testing</td>
<td>120</td>
</tr>
<tr>
<td>27.3 Magnetic Particle Testing</td>
<td>121</td>
</tr>
<tr>
<td>27.4 Penetrant Testing</td>
<td>122</td>
</tr>
<tr>
<td>27.5 Pneumatic Testing</td>
<td>122</td>
</tr>
<tr>
<td>27.6 Hydrostatic Testing</td>
<td>122</td>
</tr>
<tr>
<td>27.7 Structural Proof Testing</td>
<td>122</td>
</tr>
<tr>
<td>27.8 Leak Testing</td>
<td>122</td>
</tr>
<tr>
<td>27.9 Macro Cross-Section Examination</td>
<td>122</td>
</tr>
<tr>
<td>27.9.1 Safety Precautions</td>
<td>122</td>
</tr>
<tr>
<td>28. Welding and Cutting in Machines and Special Locations</td>
<td>123</td>
</tr>
<tr>
<td>28.1 Introduction</td>
<td>123</td>
</tr>
<tr>
<td>28.2 Lock-Out and Tag-out</td>
<td>123</td>
</tr>
<tr>
<td>28.3 Special Locations</td>
<td>123</td>
</tr>
<tr>
<td>28.4 Working in Tanks, Pipelines, Pressure Vessels, Boilers and Other Containers</td>
<td>123</td>
</tr>
<tr>
<td>28.5 Isolation</td>
<td>123</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29. General Industrial Protection</td>
<td>124</td>
</tr>
<tr>
<td>29.1 Introduction</td>
<td>124</td>
</tr>
<tr>
<td>29.2 Ergonomic Considerations</td>
<td>124</td>
</tr>
<tr>
<td>29.3 Thermal Discomfort</td>
<td>124</td>
</tr>
<tr>
<td>29.4 Lighting</td>
<td>124</td>
</tr>
<tr>
<td>29.4.1 General</td>
<td>124</td>
</tr>
<tr>
<td>29.4.2 Colour</td>
<td>125</td>
</tr>
<tr>
<td>29.5 Noise and Vibration</td>
<td>125</td>
</tr>
<tr>
<td>29.5.1 Noise</td>
<td>125</td>
</tr>
<tr>
<td>29.5.2 Vibration</td>
<td>125</td>
</tr>
<tr>
<td>29.6 Working Posture</td>
<td>125</td>
</tr>
<tr>
<td>29.7 Manual Handling</td>
<td>125</td>
</tr>
<tr>
<td>29.7.1 Correct Position for Lifting Tall Cylinders</td>
<td>125</td>
</tr>
<tr>
<td>29.7.2 Rigging</td>
<td>125</td>
</tr>
<tr>
<td>29.8 Other Ergonomic Conditions</td>
<td>125</td>
</tr>
<tr>
<td>29.9 Housekeeping</td>
<td>125</td>
</tr>
<tr>
<td>29.10 Plant and Equipment</td>
<td>126</td>
</tr>
<tr>
<td>29.11 Psychological Factors</td>
<td>126</td>
</tr>
<tr>
<td>29.12 Natural Hazard Elements</td>
<td>126</td>
</tr>
<tr>
<td>29.13 Personal Gear</td>
<td>126</td>
</tr>
<tr>
<td>29.14 First Aid</td>
<td>126</td>
</tr>
<tr>
<td>29.15 Materials Handling</td>
<td>127</td>
</tr>
<tr>
<td>29.16 Personal Hazards</td>
<td>127</td>
</tr>
<tr>
<td>29.17 Safe use of Compressed Air</td>
<td>127</td>
</tr>
<tr>
<td>30. WHS Case Studies</td>
<td>129</td>
</tr>
<tr>
<td>30.1 Welding and musculoskeletal disease</td>
<td>129</td>
</tr>
<tr>
<td>30.2 Designing GMA Welding Guns with Welder Comfort in Mind</td>
<td>129</td>
</tr>
<tr>
<td>30.3 Hand Tools</td>
<td>129</td>
</tr>
<tr>
<td>30.4 Ergonomic Welding Chair</td>
<td>130</td>
</tr>
<tr>
<td>Appendix A – References, Bibliography and Further Information</td>
<td>131</td>
</tr>
<tr>
<td>Appendix B – Statutory Authorities</td>
<td>137</td>
</tr>
<tr>
<td>Appendix C – Exposure Standards</td>
<td>139</td>
</tr>
<tr>
<td>Appendix D – Chemical Symbols</td>
<td>140</td>
</tr>
<tr>
<td>Appendix E – Typical Form for a Hot-Work Permit</td>
<td>141</td>
</tr>
<tr>
<td>Appendix F – Typical Form for a Confined Space Entry Permit</td>
<td>145</td>
</tr>
<tr>
<td>Appendix G – Flashback Arresters</td>
<td>149</td>
</tr>
<tr>
<td>WTIA Expert Technology Tools</td>
<td>150</td>
</tr>
</tbody>
</table>
INTRODUCTION

In recent times there has been an increasing emphasis on human values in society generally. In industry, this development has made the working environment safer and healthier for all concerned, thus leading to:

(a) Reduced industrial accidents and injuries and improved health and comfort of workers
(b) Compensation for the complexity and stress of modern industrial life
(c) Reduced loss of time and services of experienced people due to accidents and ill health
(d) Prevention of and reduced consequential damage to property and equipment by fire, explosion etc.
(e) Higher quality, greater efficiency and increased production and competitiveness
(f) Greater economy both to industry and to the nation.

Industrial laws and regulations are continually being revised to reflect these changing social attitudes and world developments.

Legislation continues to improve throughout Australia to control Work Health and Safety (WHS) in the workplace. The Welding Technology Institute of Australian (WTIA) remains deeply concerned with safety and health in welding and is involved in research and support to industry in this field.

Formerly all Australian states, territories and the Commonwealth were responsible for making and enforcing their own WHS laws. Although these jurisdictions drew on a similar approach for regulating workplaces there were some differences in the application and detail of the laws. The harmonisation of WHS laws across Australia has been ongoing for over two decades and aims to reduce the incidence of work-related death, injury and illness.

With the introduction of the Model Work Health and Safety Act across all Australian jurisdictions in December 2011, and the introduction of codes of practice for specific activities, harmonisation of WHS is progressing.

A number of Model Codes of Practice have been developed, including a Model Code of Practice – Welding Processes. WTIA Technical Note 7 and WTIA Technical Note 22 Welding electrical safety are referenced in the Code of Practice. The Code of Practice, and information regarding its jurisdiction, is available free of charge from the Safe Work Australia website www.safeworkaustralia.gov.au

The welding industry consists of a large number of people engaged in an extremely wide range of processes and working conditions where significant hazards are present and injuries can occur if safe practices and adequate precautions are not adopted. When carried out in a correct manner, however, using appropriate equipment and working under safe conditions, cutting and welding operations present a minor safety and health risk.

Despite the advances in welding work health and safety, injuries still occur, almost always involving human error. Significant contributors are the use of inappropriate or poorly maintained equipment and failure to identify and manage all potential hazards.

Hazard management must be considered early at the design stage of any project. Welded structures designers must be aware of, and consider, the management of hazards associated with the use of a particular material and a particular welding process. Designers should make every effort to apply hierarchy of control to minimise potential exposures to hazards during production and ongoing maintenance of welded structures.

This WTIA Technical Note has been prepared to complement available literature by presenting the latest information on matters of health and safety in cutting and welding. Its objective is to assist all involved, by serving as a basis for the general guidance of industry and for the training of personnel. Information has been drawn from the latest editions of a range of documents listed in Appendix A, however reference should always be made to the specific relevant Standards for more detailed information.

In this Note, it has not been practicable to give detailed guidance on every health and safety matter relating to cutting and welding. Where any doubt exists, advice should be sought from suitably qualified health and safety professionals.

1. Welding in this sense is used to describe all hot-work activities associated with metal fabrication including welding, cutting, gouging, grinding, burring etc.
This Note gives guidance on health and safety practices in various welding, cutting and allied processes such as brazing, soldering, pre- and post-weld material treatments and metal spraying, for:

(a) The prevention of injury to persons
(b) The prevention of ill health and discomfort
(c) The prevention of damage to property, equipment and environment by fire, explosion etc.

Various chapters deal with:

(a) The basic principles of safe working
(b) The main hazards and safety measures in welding, cutting and allied processes used in industry
(c) Precautions required in particular working situations

While this Note deals principally with health and safety of cutting and welding personnel, it is important to appreciate that safety also requires proper care of weldments, particularly those that could fail in later service and may result in injury to other persons. Examples are incorrect weld design, use of incorrect materials, incorrect welding and production of defective welds, all of which have resulted in some serious failures in service of structures and pressure equipment. Another example is the fracture of a high strength reinforcing bar due to crack initiation from stray arcing, with subsequent serious injury to a workman.

Other WTIA Expert Technology Tools address in more detail the important issues of welding electrical safety (Technical Note 22) and OHS&R Management System (MS02/5-OHS-01).

2.1 Accidents and Occupational Diseases among Cutting and Welding Personnel

People employed in welding and allied processes are exposed to a higher than average risk of acquiring diseases in the musculature, skeletal and circulatory systems. A generally high prevalence of complaints of this nature is a common finding in all types of heavy manual work. Designers need to be aware of the requirements for welders\(^2\) to access and work in areas that are cramped and confined.

2. Welder is the term used to describe the person who is performing the welding task. The term welder is often used incorrectly in common usage to describe a welding power source (welding machine).

2.1.1 Work Conditions in Different Production Areas

Attracting and sustaining a skilled workforce is becoming more competitive, with working conditions becoming increasingly important in the competition for labour. Factors that need to be considered are not confined to addressing just the mechanical aspects and designing tasks to be less physically arduous. It is also necessary to ensure the work is stimulating and rewarding with appropriate levels of challenge to skills, delegated responsibility, training and development potential. These are essential considerations in creating more interesting, safer and more satisfying jobs and a greater degree of workforce involvement and ongoing commitment.

The typical operator/welder today is not defined by the skill set, age or gender.

Some considerations to minimise the physical challenges of fabrication are:

(a) Design of the cutting and welding environment to enable a particular process to be used
(b) Design of joints to minimise or eliminate processing in difficult to access areas
(c) Welding from one side only, or if this is impractical,
(d) Minimise processing by welding first from the more difficult access side then back gouging, grinding and welding from the less difficult to access side

2.2 Mechanisation and Automation of Welding

Automation and mechanisation will not only bring changes in the area of welding technology, but will also improve the professional and social lives of welders/operators. The objective of mechanisation and automation is not only to replace the physical effort of people by that of machines, but also to transfer the control of a multitude of intricate and difficult to control processes from man to automatic welding systems and welding robots. Increasingly, development in capability and steadily reducing cost of microelectronics, computers and information technology now place the achievement of these objectives within our reach.
Mechanisation and automation are becoming increasingly accessible even to smaller operations, however this approach is not always practical, economical or possible depending on production volumes and time frames.

2.3 Productivity and Environment

Significant gains in productivity can be achieved provided all the industrial safety and environmental factors are considered correctly. Environmental costs must be weighed against specified criteria as well as the subjective perception of improvements. Some generalisations can be made based on recent improvements in manufacturing:

(a) Productivity is enhanced if the welder is more comfortable
(b) Productivity is enhanced if cutting accuracy is high
(c) Productivity is enhanced if weld fit-up is accurate and consistent
(d) Productivity is enhanced if cutting and welding equipment is well maintained

2.3.1 New Production Systems

The introduction of production-line technology in steel prefabrication of larger structures has resulted in throughput times being more predictable. Examples of these enabling technologies are:

(a) Precision manufacturing with laser cutting and welding in one production line
(b) Modular fabrication methods
(c) High levels of mechanisation and automation utilising CAD, CAE and CAM design with extensive computer and CIM use
(d) An increase in man-machine interfaces in shop floor control systems
(e) Development of highly trained and motivated staff and production personnel

There is a challenge to train and motivate personnel for high-technology production. Human resources are critical in the production environment of the future due to increased complexity of work and machines.

2.3.2 Purchase of Production Machines and Welding Equipment to Improve Process Performance

It is important that when new equipment is purchased with the intention of upgrading to better technology, for improvements in productivity, quality, capability or efficiency, there is capability in the company to deal with the inevitable issues around commissioning and implementation and that the expected improvements are realistic. The purchase of production machines and welding equipment and the initial adaption of the process can result in unnecessary delays or non-conformances, which could have an adverse effect on the workforce.

Work performance must be based on criteria related to the abilities and limitations of the operator. Advice from a supplier may be minimal, inappropriate or inadequate for the specific production environment and lead to a failure to perform because all the relevant environmental factors are not taken into account. Some general guidelines include:

(a) Power sources and ancillary equipment should be as small, powerful and efficient as practicable
(b) Welding cables and guns should be as light and flexible as possible consistent with power rating, duty cycle and durability
(c) Strain relief systems should be introduced wherever practicable to minimise loads on the operator
(d) Recent developments such as pulsed Gas Metal Arc Welding (GMAW), Flux Cored Arc Welding (FCAW), Tandem GMAW, Friction Stir Welding etc. should be introduced to enable higher productivity and quality
(e) MMAW and SAW should be used where mechanical properties are difficult
(f) Fixtures and manipulators should be utilised to facilitate assembly and welding with minimal physical labour by welders

2.3.3 Ergonomics on the Production Floor

Ergonomics combines knowledge from three disciplines:

(a) Human science
(b) Work-related sciences, and
(c) Production science

Few ergonomists cover the entire field and it is usually personal interest that determines the individual’s profile of expertise. Teamwork in any organisation contributes to the total knowledge available. For a comprehensive workplace survey for example, team members should include ergonomists to facilitate the search for human and practical solutions.

The trained ergonomist should support the team and try to identify in advance work situations where excessive load is likely to be placed on the welder/operator. Poor ergonomics mean not only impaired quality of work, but also increased risk of acquiring health problems that may force the welder into periods of sick leave and eventually premature retirement. It is well documented that musculoskeletal disorders are a major reason for early retirement of welders.

Ergonomists have been involved in the development of a specialised welders chair in Europe.

2.3.4 Competence Training and Management for Welding

Welding personnel should be trained in the most comprehensive way practicable, enabling them to act on their own authority within their area of responsibility. Training should address the total skill set required for a particular area of activity. It is not sufficient to pass on selected skills and knowledge in individual, isolated subfields.

Comprehensive knowledge extending across processes and reflecting the latest status of technical and scientific development is a prerequisite for technical decision makers. It may be difficult to locate or recruit suitable highly qualified personnel and this has a negative effect
on the quality of the product. There is a need to develop special training and advanced training measures geared to the specific requirements of the welding personnel (welders, machine operators and welding supervisory personnel) from the entire range of training modules in order to take even better account of the particular needs of this group of people.

2.3.5 Access for Maintenance
Designers should be trained and competent to design welded components that enable access for initial production and through-life maintenance to avoid having to make significant modification, e.g. cut holes in the hull of a ship, to provide access for welding.
PRINCIPLES OF SAFE WORKING

3.1 Basic Objective
All industrial operations including cutting and welding, introduce hazards and potential risks that may affect health and safety if adequate precautions are not taken. Thus, one basic objective must be to ensure that work is always carried out in such a manner as to maintain:

(a) The health (i.e. wellbeing and soundness of body) of personnel directly engaged in the work, their associates and other nearby persons, and
(b) The safety (i.e. minimisation of risk) of all personnel involved, including those nearby also damage to nearby plant, equipment and the environment.

3.2 Work Health and Safety
The majority of industrial injuries and diseases are related to the type and location of the industrial operations. They can result from a combination of circumstances that in isolation create little problem, e.g. local overheating of a poor welding cable connection, but this occurrence may set alight adjacent flammable material that in turn results in fire, burns to personnel and loss of equipment.

3.3 Hazard Identification and Risk Assessment
Management, unions, employees and other persons directly responsible for, or involved in, industrial operations must be aware of all hazards that could arise in these operations, and the risks to health and safety must be eliminated or minimised and controlled.

Under some State Legislation, special committees (WHS Committees) are required to be set up to discuss health and safety aspects of the workplace. In order to achieve a safe workplace, it is necessary to conduct hazard identification and risk assessment for all procedures, plant and chemicals used in the workplace. The result of a competent hazard identification and risk assessment should include:

(a) Identification of hazards and the way in which the hazards can cause injury or ill health
(b) Assessment of the magnitude of the risk (Job Safety Analysis), and
(c) Control of all hazards to eliminate them or minimise risks to health and safety.

The hazard identification and risk assessment should be conducted in accordance with the guidelines in AS/NZS ISO 31000 Risk management – Principles and guidelines. It should be fully documented and it should be repeated whenever new procedures or chemicals are introduced in the workplace or otherwise at least every 5 years.

All Australian States have adopted National Model Regulations and National Codes of Practice for the control of Workplace Hazardous Substances. These documents provide information on risk assessment relevant to exposure to chemicals and fumes. Under some State legislation, workplace health and safety committees are required to be set up, in certain circumstances, to discuss health and safety aspects of the workplace. WHS Committees are particularly relevant in organisations involved in welding, cutting, spraying, brazing or soldering activities.

3.4 Common Hazards of Cutting and Welding
In virtually all injuries, one or more of the following factors have been involved:

(a) Failure to identify a hazard
(b) Failure to minimise or avoid the hazard
(c) Lack of knowledge of the materials being used
(d) Inadequate safety precautions
(e) Poor equipment design or maintenance
(f) Poor working procedures, methods, or supervision
(g) Worker inexperience or lack of knowledge of operation
(h) Failure to monitor changing working environment and conditions, e.g. damp clothing

3. Hazard is a situation with potential to harm.
4. Risk is the combination of the likelihood, exposure and consequence(s) of failure to manage a hazard.
Hazards, injuries and illness that welding and cutting personnel, including Supervisors and Inspectors, are exposed to more frequently than other workers include:

(a) Electric shock – Contact with electrically live components on both primary and secondary circuits of cutting and welding power sources

(b) Radiation burns – Burns to the eyes or body due to the welding arc – high intensity infrared (IR) and ultraviolet (UV) energy from welding power sources

(c) Thermal burns – Burns due to weld spatter or contact with hot or molten materials, or due to burning of clothing etc. especially in oxygen enriched atmospheres

(d) Fire – Fire in the surrounding environment due to flammable materials, gases or liquids and particles due to hot metal, arc, flame, sparks, hot metal or spatter or electrical faults

(e) Explosion – Explosion of fuel gases, flammable gases contained within or flammable gaseous mixtures created within containers during hot-work ignited by arcs, flames, sparks, hot metal or spatter or electrical faults in combination with flammable materials, gases or liquids

(f) Eye injury – Radiation – excessive visible, IR or UV radiation, fume and foreign matter such as high velocity particles and falling dusts can cause injury

(g) Respiratory problems – may result from inhalation of fume from cutting, welding, brazing, soldering and may be exacerbated by surface coatings and contaminantants on the material being dealt with, from breakdown of contaminants such as residual chemicals in drums, paint or plastic bonded to metals.

(h) Asphyxiation – Displacement of oxygen by non-toxic gases can be dangerous, particularly in unventilated environments

(i) Exposure to gases –
 (i) Toxic gases – Gases containing potentially harmful constituents
 (ii) Inhalation – Inhalation of dusts and particles

(j) Toxic materials –
 (i) Skin contact with residues of materials used in surface preparation such as solvents, cleaners, fluxes or residues of coatings, lubricants, etc. on surfaces affected by cutting and welding
 (ii) Ingestion of chemicals dust and particles from residues on hands and face

(k) Hearing impairment – Excessive noise should be avoided. Noise may be generated by the process or transmitted to the operator by surrounding metal

(l) Physical injuries –
 (i) Muscular skeletal injuries – particularly when working in situations that are poorly ergonomically designed. Cutting and welding is often required in cramped, confined and awkward positions and

...
Establishing the level of a risk requires clear specification of the actual components of the risk being considered, that is:

(a) The specific scenario or sequence of events including the nature of consequences to be considered
(b) The exposure to the chosen hazard, and finally
(c) The probability or likelihood of that scenario taking place

To combine the three components of any risk in assessing its level, the following procedure may be adopted:

(a) Choose a specific consequence or outcome severity for one possible sequence of events involving the hazard under consideration. Other possible sequences with different possible consequences need to be assessed separately. The number of persons harmed and the nature of their injuries/illness affect the estimation of the consequence or outcome severity
(b) Determine the exposure for the chosen sequence i.e. how often (frequency), how long (duration) and to what extent the affected persons are exposed to the particular hazard (for a toxic hazard this would include any time-weighted average or ceiling exposure)
(c) Estimate the probability, likelihood or chance that the chosen scenario will lead to the specific consequences being considered. Every scenario considered for any particular hazard has its own specific risk level. The integrity and effectiveness of any existing risk control measures will need to be included in estimating probability

The level of risk assessment depends on the complexity of the task. This may include, but is not limited to:

(a) Basic risk assessment
(b) Process Hazard Analysis\(^6\) (PHA)
(c) Failure Mode Effects Analysis\(^7\) (FMEA)
(d) Hazard Operability\(^8\) (HAZOP)

3.5.3 Control Measures to Reduce Initial Risk

Complete “Control Measures to Reduce Initial Risk” column, including all immediate actions that will be implemented. This is particularly important for issues where the initial risk assessment determines high risk.

3.5.4 Risk After Intended Controls and Actions

Carry out another risk analysis to determine “Risk after intended Controls and Actions” once initial actions have been implemented. The aim is to implement measures to reduce the level of risk, focusing firstly on the high-risk areas.

3.5.5 Action Required

List all longer-term actions to be taken.

3.5.6 Person Responsible

Appoint a responsible person to address these action points.

3.5.7 Scheduled Completion Date

Set a completion date.

(a) Ensure management participation
(b) Remember the Compliance Checklist is a “live” document and must be maintained

3.6 Safe Working Practices

A safe working practice document should be completed for each operation or group of operations involved. Having identified feasible hazards, steps must be implemented to prevent damage and accidents or injuries to all persons in the workplace. Such steps would include:

(a) Regular checking and maintenance of equipment
(b) Induction and periodic training of personnel in health and safety procedures
(c) Ensuring suitable safety devices are installed
(d) Ensuring safe working methods and procedures are known and observed
(e) Ensuring suitable personal protective equipment is provided and maintained
(f) Periodic review of control procedures to determine effectiveness
(g) Procedures to ensure that contract workers are aware of workplace hazards before they begin work

3.7 Responsibility for Health and Safety

Occupational health and safety legislation adopted in all States imposes responsibility on all employers and people who have any control of a workplace to ensure that the workplace is safe and that healthy and safe work practices are observed. This responsibility is to contractors and visitors as well as to direct employees. Everyone has a responsibility to look out for the safety of themselves and others.

Overall responsibility rests with the highest level of management. Management should ensure that a healthy and safe working environment is provided and maintained, that safe systems of work are known and followed, and that all workers receive appropriate WHS training and are consulted. Management is also responsible for providing first aid, and planning for foreseeable emergencies.

All persons in an organisation are involved in some aspect of health and safety and each person must be aware of their responsibility in order to provide a safe workplace environment for themselves, colleagues and others.

3.8 Work Health and Safety Policy

Senior management has a responsibility to ensure an occupational health and safety policy is developed and promoted in the workplace. The WHS policy should outline
the organisation's approach to workplace health and safety and commit all levels of management and supervision to the maintenance of health by facilitating a safe work environment. Implementation of an appropriate health and safety programme must occur at all levels of the organisation. The prevention of accidents and injuries is achieved through good design of equipment and working conditions and control of employees' actions. A rational and consistent approach that involves workers in risk assessment and in decisions about controls is the best way to achieve worker cooperation and compliance. In some states it is a legislative requirement to consult employees and unions on occupational health and safety issues.

3.9 Work Health and Safety Programme

A planned approach to occupational health and safety must be taken at each plant or work site. A systematic approach that may include the use of cutting and welding specific check lists, discussions with employees and detailed consideration of workplace specific problems should be applied to ensure all foreseeable hazards are identified assessed and controlled. The production of fume from welding, cutting and allied processes must be addressed in this process.

As part of assessing the risks the effectiveness of existing controls should be evaluated.

Suitably experienced staff should conduct the risk assessment. It may be “simple and obvious” (SAO) or complex, depending on the nature of the hazards and the threat posed to health and safety. Professional assistance may need to be recruited from outside the organisation for complex situations and serious threats to health. An outcome of the risk assessment may be improved equipment design or upgraded safety devices. Standard operating procedures and the nature of induction training required to operate plant and other tasks should grow out of the risk assessment process. Documentation, such as material safety data sheets (MSDS), and equipment instructions used in the assessment process should be available for reference.

3.10 Hierarchy of Control

When assessing the effectiveness of existing controls and endeavouring to improve them the hierarchy of controls should be used, that is:

3.10.1 Elimination

Where possible eliminate the use of hazardous equipment or methods. For example, get rid of a dangerous machine or stop using a dangerous practice.

3.10.2 Substitution

Where elimination is not possible, substitute safer equipment or methods for the hazardous ones. For example, replace a more dangerous alternating current (a.c.) MMAW welding machine with a less hazardous direct current (d.c.) MMAW welding machine.

3.10.3 Isolation

Where elimination or substitution is not possible, isolate the hazard from people. For example, ensure power is off every time the welder changes an electrode when using the MMAW process.

3.10.4 Engineering Controls

Where elimination, substitution or isolation is not possible, minimise the risk by engineering controls. For example, attach flashback arresters to both ends of oxygen and acetylene hoses to minimise the risk of and damage to equipment resulting from flashback.

3.10.5 Administrative Controls

Where elimination, substitution, isolation or engineering controls are not possible, minimise the risk by administrative controls, usually by developing and implementing safer working practices and by providing appropriate training, instruction or information. For example, ensure procedures correctly identify and address approaches to minimise hazards and ensure personnel are adequately trained.

3.11 Personal Protective Equipment

Where elimination, substitution, isolation, engineering controls or administrative controls are not possible, minimise the risk by personal protective equipment (PPE) as a second line of defence when other means are not appropriate or fail e.g. use of gloves. Due to the nature of several hazards encountered in cutting and welding, PPE is the first and only line of defence. It is therefore essential that the correct equipment is made available, that it is correctly fitted and used, and correctly maintained.

All PPE should be regularly checked and replaced as necessary. All PPE should be selected, purchased and maintained to meet the requirements of the relevant product standards.

Management and Unions at all levels should, by example and direction, encourage the development of health and safety awareness.

All employees should be suitably trained to undertake their work safely by implementing safe practices as an integral part of their work. A “safety culture” influencing all work should be expected, not the piecemeal application of precautions only for the most hazardous procedures.

Adequate first aid, nursing and/or medical facilities should be available. There should be an effective system for reporting and investigating any accident, incident near miss or ill health.

3.12 Energy Isolation

In the workplace there may be many energy sources that have the potential to cause major injuries or death. The separation and/or control of energy sources are critical in protecting people. Energy comes in many different forms, and each has to be considered before undertaking work. Using a systematic planned approach to isolation of energy sources provides a safe work environment.

9. Personal protective equipment (PPE) such as face shields, welding helmets, gloves, spats, aprons and the like are often the only protection for the welder from the hazards associated with cutting and welding activities.
A key element in a WHS Management System is the development, documentation and implementation of an isolation information system.

This may include but is not limited to:
(a) Individual isolation procedures and isolation plans
(b) Manuals
(c) Schematic diagrams
(d) Equipment and isolator labelling
(e) Isolator location diagrams
(f) Standard jobs
(g) Lists of assigned and authorised Isolation Planners, Isolating Persons, Responsible Managers, Department/Location Managers

Isolation plans must be controlled documents.

Key personnel involved in isolation management including Isolation Planners, Isolating Persons and Protected Persons must all be trained and have current authorisation for the specific areas of operation.

3.12.1 Provision of Isolation Equipment

Typical isolation equipment includes:
(a) Lockable isolators
(b) Locks
 (i) Personal locks (red)
 (ii) Equipment locks (yellow)
 (iii) Group locks (green)
(c) Identification (ID) tags
(d) Multi-lock devices
(e) Other equipment that may be required includes:
(f) Lockout stations
(g) Isolation boards
(h) Hasps, chains, covers
(i) Warning tags

Isolators should be uniquely and permanently labelled and fit for duty.

3.12.2 Isolation Planning

The Isolation Planner is responsible for planning, developing and clearly documenting the isolation procedure. Isolations should be planned to achieve total isolation.

Isolation plans require:
(a) An evaluation of the job(s)
(b) Identification of the energy types
(c) Assessment of the hazards
(d) Identification of the method of controlling the hazards
(e) A procedure for stopping the machine
(f) Identification of each isolator and its safe position
(g) A method for securing the isolator

(h) A method for restraining or dissipating any stored or residual energy (preventing re-accumulated energy)
(i) A method for verifying the effectiveness of the isolation
(j) A procedure for returning to service, including sequence of de-isolation

3.12.3 Performing Isolations

Only authorised Isolating Persons should perform isolations. The following outlines the typical steps:
(a) Obtain permission from the Plant Owner before isolating plant and equipment
(b) Use approved isolating equipment
(c) Conduct the isolation according to the isolation plan, including, in the following order, to:
 1. Check that equipment is stopped and safe to isolate
 2. Place each isolator in the safe position and confirm the identity of the isolator
 3. Lock/secure each isolator and dissipate or restrain any stored or residual energy
 4. Carry out necessary verification
(d) Notify Protected Persons that the isolation has been completed

3.12.3.1 Individual Isolations

(a) Use yellow equipment lock to secure isolator/s prior to verification
(b) After verification, attach a multi-lock device on each isolator, and place yellow equipment lock onto each multi-lock device. A multi-lock device secured with an equipment lock indicates that the isolation has been verified
(c) Check that each yellow equipment lock identifies the Isolating Person

3.12.3.2 Group Isolations

(a) Attach a yellow equipment lock on each isolator
(b) Check that each yellow equipment lock identifies the group isolation board
(c) Secure the checklist and the keys of each yellow equipment lock in the group isolation board with a green group lock

3.12.3.3 Working Alone Isolations

(a) Check that ‘working alone’ isolation is permitted
(b) Some sites may not allow ‘working alone’ isolations due to the level of risk on the site
(c) Only use ‘working alone’ isolation when the Isolating Person is the only person required to secure the isolator for personal protection
(d) Attach a red personal lock directly onto the isolator. This applies to an Isolating Person performing a ‘working alone’ isolation

10. These are the most commonly used colours for isolation locks.
3.12.4 Protected Persons Working Under an Isolation

All people working under an isolation should be Protected Persons. People who have not been trained and assessed as competent Protected Persons should not be permitted to work under an isolation. The Protected Person should ensure that:

(a) Each isolator or group isolation board isolates the correct equipment that is consistent with the work instruction, plan or other documentation
(b) Their own red personal lock is attached to the multi-lock device or to group isolation board before commencing work
(c) They only work on plant and equipment with the appropriate level of isolation in place
(d) Attachment of their red personal lock secures the multi-lock device or the group board
(e) For individual isolations, only attach red personal lock to multi-lock device that has yellow equipment lock attached
(f) For group isolations, only attach red personal lock to a group isolation board that has been secured by a green group lock, which signifies that the group isolation has been verified

3.13 Control Effectiveness

Conventional risk analysis is based on analysis of likelihood or probability (L) and consequences (C) and often biased by either procedural and or application errors. An alternative to the L x C risk analysis approach is to consider control effectiveness to determine acceptable risk.

The following is an extract from AS/NZS ISO 31000 Risk management – Principles and guidelines

Clause 4.3.4 Accountability

“The organisation should ensure that there is accountability, authority and appropriate competence for managing risk, including implementing and maintaining the risk management process and ensuring the adequacy, effectiveness and efficiency of any controls. This can be facilitated by:

- Identifying risk owners that have the accountability and authority to manage risks
- Identifying who is accountable for the development, implementation and maintenance of the framework for managing risk
- Identifying other responsibilities of people at all levels in the organization for the risk management process
- Establishing performance measurement and external and/or internal reporting and escalation processes, and
- Ensuring appropriate levels of recognition.”

Also from AS/NZS ISO 31000

Clause 4.5 Monitoring and review of the framework

“In order to ensure that risk management is effective and continues to support organizational performance, the organization should:

- Measure risk management performance against indicators, which are periodically reviewed for appropriateness
- Periodically measure progress against, and deviation from, the risk management plan
- Periodically review whether the risk management framework, policy and plan are still appropriate, given the organizations’ external and internal context
- Report on risk, progress with the risk management plan and how well the risk management policy is being followed, and
- Review the effectiveness of the risk management framework.”

3.14 Safe Working by Personnel Exposed To Hot-Work

It is essential that each worker be advised by his or her employer of any hazards peculiar to the work environment. It should be recognised that while safety devices and safe working practices will greatly reduce the number of accidents that occur, each worker plays a major role in overall safety.

Hence, each worker and assistant should:

(a) Know and use the safe working method and procedures and when in doubt, ask
(b) Ensure all equipment used is maintained in a safe condition
(c) Ensure that work environment hazards are managed or eliminated
(d) Make use of appropriate personal protective clothing and equipment
(e) Ensure fume control or ventilation systems function properly
(f) Maintain a high standard of housekeeping
(g) Ensure any unsafe condition is made safe before working
(h) Ensure dangerous areas are properly sign-posted, and enter such areas only when necessary e.g. highly flammable or toxic areas
(i) Ensure the use of adequate lighting
(j) Be aware that many occupational hazards are exacerbated in smokers and never smoke cigarettes on the job
(k) Immediately sign-post or tag with a specially designed tag and report any defective or dangerous equipment to persons responsible for equipment maintenance
Electric Arc Welding, Cutting and Gouging

4.1 Introduction

This Chapter refers to measures that should be adopted for safety in the use of processes that use an electric arc between an electrode and workpiece or between electrodes to develop heat for welding, cutting or gouging. These processes require particular safety consideration in respect of the possible hazards shown in Table 4.1 i.e. electric shock, radiation, burns, fume and noise.

4.2 Basic Requirements of Electrical Equipment

All main and ancillary equipment necessary for these welding operations should be selected and used on the basis that it has the required capacity or rating and is safe (Reference 2). This equipment should also comply with the requirements of electrical supply authorities that are usually based on relevant Australian Standards (See also Section 4.3.2).

4.3 Welding Power Sources

4.3.1 Types of Welding Power Sources or Welding Machines

A wide range of direct current (d.c.) and alternating current (a.c.) power source types are available for electric arc welding:

(a) Low frequency a.c., including mains frequency (50 Hz)

(b) High frequency (HF) a.c. Typically 5-6 kHz

(c) d.c. (Some types of rectifiers impose a mains frequency wave form on the d.c.)

(d) Pulsed current (some of the above current types may be pulsed at e.g. 25-500 Hz)

Power supplies to provide such current types are:

(a) Welding power sources driven by electric motors, petrol or diesel engines
 (i) Generators provide d.c.
 (ii) Alternators provide a.c. or, with rectifier, d.c.

(b) Transformers that reduce mains voltage to that required for welding
 (i) Transformers provide a.c.
 (ii) Transformer/rectifiers provide d.c.

(c) Solid state power supplies (including pulsed welding units)
 (i) Solid state d.c. units
 (ii) Solid state a.c. units
 (iii) Primary Rectifier-inverter usually known as Inverter units, a.c. and d.c.
 • Square wave low frequency a.c.
 • HF a.c. including HF ignition or re-ignition devices added on to d.c. or low frequency a.c. supplies

Many welding power sources, especially engine-driven units, also provide a 240 V a.c. (50 Hz) outlet for power tools.

4.4 Risk of Electrocution

The risk of electrocution (death by electric shock) is primarily related to:

(a) The voltage of an electric source

(b) The type of current i.e. a.c., d.c. rectified from a.c. with a component of ripple, or d.c. without ripple, and also

(c) The available current

With welding power sources the available current is always thousands of times higher than the level that poses a threat to human life. Current of the order of 40 mA can cause ventricular fibrillation, heart failure and death. Electrical voltages at both input cable and the output cables of the welding power source may be high enough to cause sufficient current to flow through the body to inflict serious injury, even death. Welders, operators and other personnel in the area must be familiar with the risk and must undertake the precautions described herein and in Chapter 14 to avoid electric shock or at worst electrocution. Limiting current flow in people depends on maintaining a high circuit resistance.
Table 4.1 Hazards in Arc Welding, Arc Cutting and Air-Arc Gouging

<table>
<thead>
<tr>
<th>Process</th>
<th>Hazards (Note 1)</th>
<th>Electric Shock</th>
<th>Radiation (Note 2)</th>
<th>Burns (Note 3)</th>
<th>Fume (Note 4)</th>
<th>Particulates (Note 4)</th>
<th>Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual Metal Arc Welding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Gas Tungsten Arc Welding (Note 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>Gas Metal Arc Welding</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>Flux Cored Arc Welding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X (Note 5)</td>
<td>X (Note 10)</td>
<td>—</td>
</tr>
<tr>
<td>With gas (TC) or FCAW(M) (Note 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X (Note 11)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Without gas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X (Note 12)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Submerged Arc Welding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Electroslag Welding (consumable guide)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X (Note 6)</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>Electroslag Welding (consumable guide)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X (Note 8)</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>Welding (consumable guide)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X (Note 8)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Plasma Arc Welding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X (Note 8)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Plasma Arc Cutting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X (Note 8)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Water shrouded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X (Note 8)</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>Submerged</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X (Note 8)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Arc-air Cutting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X (Note 8)</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>Arc-air Gouging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X (Note 8)</td>
<td>—</td>
<td>X</td>
</tr>
</tbody>
</table>

NOTES:
1. X indicates hazard
2. Ultraviolet, visible and infrared radiation
3. Includes hot objects and particles
4. Due to consumables, materials and coatings
5. Shielding gas also introduces hazards from high-pressure cylinders and risk of asphyxiation
6. Slight risk of accidental exposure. Limited protection is advisable
7. Fume level is low and welder is remote from arc
8. Welder is remote from fume
9. Noise levels relatively low – main source is motor driven equipment
10. Varies according to arc (transfer) mode
11. Low levels of fine spatter produced if the consumable is used within recommended settings
12. Higher levels and larger particles produced by this process

AS/NZS 60479.1:2010 Effects of current on human beings and livestock – General aspects describes the effects of direct current passing through the human body in Clause 6 and notes:

“The term “direct current” means ripple-free direct current. However, as regards fibrillation effects, the data given in this clause are considered to be conservative for direct currents having a sinusoidal ripple content of not more than 10 % r.m.s.”

Consequently the open circuit voltage of a d.c. welding power source should be measured by a procedure capable of quantifying any a.c. component such as using a true root mean square (r.m.s.) voltmeter, or preferably an oscilloscope or dedicated data acquisition device for...
Table 4.2 Maximum Open Circuit Voltage Permitted by AS 1674.2 – 2007

<table>
<thead>
<tr>
<th>Working environment categories</th>
<th>Maximum permitted open circuit voltage (OCV)</th>
</tr>
</thead>
</table>
| Category A environment (AS 1674.2 Clauses 1.3.6.1, 2.2 (a) & 2.3.1) is where the risk of electric shock or electrocution is low due to controls to prevent the possibility of the welder or other personnel being in contact with the workpiece in the event of being in contact with a live part of the welding circuit. | d.c. 113 V peak, or
a.c. 113 V peak and 80 V r.m.s. |
| Category B environment (AS 1674.2 Clauses 1.3.6.2, 2.2 (b) & 2.3.2) is where there is a high probability of the welder or other personnel being in contact with the workpiece. Freedom of movement may be restricted. | d.c. 113 V peak, with an observer (Note 6)
a.c. 68 V peak and 48 V r.m.s., with an observer (Note 6) |
| Category C environment (AS 1674.2 Clauses 1.3.6.3, 2.2 (c) & 2.3.3) is where there is a high probability of the welder or other personnel being in contact with the workpiece and the risk of an electric shock or electrocution is greatly increased due to the presence of moisture e.g. from high humidity, high ambient temperature, perspiration or water. | d.c. 35 V peak, always with an observer, or
a.c. 35 V peak and 25 V r.m.s., always with an observer (Note 7) |
| Mechanically held torches with increased protection for the operator | d.c. 141 V peak, or
a.c. 141 V peak and 100 V r.m.s. |
| Plasma cutting | d.c. 500 V peak |

NOTES:
1. Refer to AS 1674.2 for more detailed descriptions of categories of environments for welding. Refer to WTIA Technical Note 22 for more information on management of the categories of environments.
2. Each power source, complying with IEC 60974-1 that is suitable for a Category B environment should be marked with a symbol comprising the letter “S” in a square box. This symbol can be found in Box 7 of the rating plate or sometimes on the front panel.
3. MMAW power sources to old Standards may supply excessively high a.c. voltages for Categories B and Category C environments. It is necessary to measure the open-circuit voltage to determine suitability and, if necessary, fit a hazard-reduction device.
4. Power sources to be used in Category B or Category C environments are likely to require a hazard-reducing device (Standard AS 1674.2 – 2007 Clauses 3.2.3 and 3.2.7).

5. Most GMAW, GTAW and FCAW equipment will meet Category C requirements because welding voltage and current is switched with a trigger switch. Refer AS 1674.2 Clause 2.3.3 Note 2.
6. For AS 1674.2 Category B environments the maximum permitted OCV is reduced to the same levels as those for a Category C environment if the welder is working without an observer.
7. An observer is required at all times for AS 1674.2 Category C environments.
8. Recent research has shown that the amount of moisture required to produce Category C conditions in the welders clothing is very small and can easily be produced by perspiration. If there is any doubt about the ‘presence of moisture’ category C restrictions should be observed (Reference 49).

a more accurate measurement. If the a.c. ripple exceeds 10% of the d.c. voltage then the welding power source should be considered as an a.c. welding power source in terms of hazard level.

4.4.1 Inverter Power Sources

Whilst inverter power sources are generally a little more expensive than traditional transformer-based power sources they have the following advantages:

(a) Lighter and therefore easier to move around.
(b) Higher electrical efficiency, extremely low no-load current and higher power factor generating far less heat at the power source.
(c) Much higher response rates than conventional power sources allowing improved process control.
(d) Ability to accept a wide range of input voltages and stable output power not determined by stability of input voltage, hence no-load voltages are more stable and controllable.

Inverter power sources are required by Electromagnetic Compatibility (EMC) regulations to have filtering to prevent unwanted noise and interference being propagated from the device back into the input power supply.

Inverter welding power sources are generally used in a relatively hostile environment and the in the event of an open circuit earth connection, the EMC filter can produce a potential of approximately half the input supply voltage on the case of the welding power source and in some inverter power sources this voltage can appear on the work return outlet.

In the event of an open circuit of both the earth and neutral connections, the full supply voltage can appear on the case or work return outlet. The current is only a few milliamperes (mA) but enough to cause a significant shock.

Therefore it is imperative that the integrity of the power supply connection both in the welding power source and in the plug is checked regularly. It should be noted...
that extremely high voltages are generated in the internal power circuits of these machines and they must never be operated or connected to the primary supply unless the full protective case is secure and undamaged.

4.4.2 Compliance

Industrial welding power sources are generally manufactured to AS 60974.1 Arc welding equipment – Welding power sources. Single-phase portable welding power sources are required to conform to AS 60974.6 Arc welding equipment – Limited duty portable arc welding and allied processes power sources.

Welding power sources are required by these Standards to have a clearly visible nameplate that legibly and indelibly provides information relevant to the operating conditions of the welding power source. Nameplates should not be interfered with in any manner.

It is recommended that purchasers of welding equipment seek a letter of compliance from the manufacturer of the equipment. Provision of such a letter of compliance is allowable under the requirements of WHS legislation in some States.

4.4.3 Open Circuit Voltage or No-Load Voltage

Welding power sources generally operate within the following voltage range:

- Open Circuit Voltage\(^{12}\) (OCV)35-113 V
- Operating Arc Voltage 10-36 V

The OCV (i.e. voltage between welding terminals ready for welding but carrying no current), sometimes referred to as the no-load voltage, poses the greater hazard. OCV is accordingly restricted by AS 1674.2 Safety in welding and allied processes – Electrical for three classifications (Refer to Table 4.2).

- Category A
- Category B
- Category C

4.4.4 High Frequency Equipment\(^{13}\)

High frequency (HF) (high voltage pilot arc) is often used to facilitate arc starting, e.g. to eliminate scratch or lift-arc starting in GTAW (TIG welding). In the event of high frequency system failure the output voltage must not exceed the levels shown in Table 4.2.

It is not recommended that HF be used in confined spaces. Wherever HF is used, the circuit must be such that HF current will not create a danger for the welder or other personnel, e.g. inside confined spaces with metal walls (See Chapter 20). Additionally, precautions should be made to avoid interference by electromagnetic fields, created by HF currents and voltages, with other equipment.

Improved technology in power sources such as lift arc GTAW and square wave a.c. output enable easy starting and stable arc conditions without the need for high voltage pilot arcs, effectively eliminating the hazard.

4.4.5 Service Conditions

Welding power sources that comply with AS 60974.1 and AS 60974.6 shall be capable of delivering their rated output when the following environmental conditions prevail:

(a) Range of the temperature of the ambient air:

- During welding: \(-10^\circ\text{C}\) to \(+40^\circ\text{C}\);
- After transport and storage at: \(-25^\circ\text{C}\) to \(+55^\circ\text{C}\);

(b) Relative humidity of the air:

- Up to 50 % at 40°C
- Up to 90 % at 20°C

(c) Ambient air, free from abnormal amounts of dust, acids, corrosive gases or substances etc. other than those generated by the welding process

(d) Altitude above sea level up to 1,000 m

(e) Base of the welding power source inclined up to 15°C

Welding power sources should be located in clean, dry conditions away from high temperatures. Dust, oil and moisture may cause deterioration or overheating of plant, possibly making it unsafe or inoperative. Where welding power sources are required to be located out of doors, suitable protection must be provided to protect them from the environment. Special protection is required for welding power sources exposed to corrosive fumes, steam, shock loading or severe weather.

Many industrial situations contain hose down areas as defined in AS/NZS 3000 Electrical installations (known as the Australian/New Zealand Wiring Rules). Unless the welding power source has the correct rating, i.e. IP23 in accordance with AS 60529 Degrees of protection provided by enclosures, it should not be used in hose down areas.

Electric welding equipment must not be used in hazardous atmospheres e.g. environments containing flammable gases or combustible dusts where an explosion could occur.

Welding power sources that comply with AS 60974.1 are marked with a degree of protection on their compliance plate. Welding power sources for use outdoors are rated with a degree of protection IP23 in accordance with AS 60529\(^{14}\).

Welding power sources with a degree of protection IP21 are only suitable for use indoors. If the degree of protection is not stated on the welding power source, the manufacturer should be consulted. If the welding power source will be used in an unusual environment, the manufacturer should be consulted as regards its suitability.

Examples of unusual environments include conditions such as high humidity, unusual corrosive fumes, steam, excessive oil vapour, abnormal vibration, abnormal shock, excessive dust, severe weather conditions, vermin infestation and atmospheres conducive to the growth of fungus.

\(^{12}\) Open circuit voltage (OCV) is also known as the no-load voltage.

\(^{13}\) AS/NZS CISPR 11:2011 (IEC CISPR 11, Ed. 5.1 (2010)) Industrial, scientific and medical equipment – Radio-frequency disturbance characteristics – Limits and methods of measurement

\(^{14}\) AS 60529 IP 23 is a minimum for outdoor conditions but a higher rating may be appropriate pending assessment of the environmental conditions
Table 4.3 Determining I_{eff} for Resistance Welding Power Sources Based on AS/NZS 3000:2007 C 2.5.2.3 (a) (ii)

<table>
<thead>
<tr>
<th>Duty cycle %</th>
<th>50</th>
<th>40</th>
<th>30</th>
<th>25</th>
<th>20</th>
<th>15</th>
<th>10</th>
<th>7.5</th>
<th>≤ 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplier</td>
<td>0.71</td>
<td>0.63</td>
<td>0.55</td>
<td>0.50</td>
<td>0.45</td>
<td>0.39</td>
<td>0.32</td>
<td>0.27</td>
<td>0.22</td>
</tr>
</tbody>
</table>

4.4.6 Welding Power Source Loading
Care should be taken to ensure that:

(a) The current rating of the selected welding power source is adequate to handle the welding job
(b) The welding power source is not operated above the maker’s current rating at the appropriate rated duty cycle (Reference AS 60974.1 or AS 60974.6)

Caution must be exercised when using low duty cycle or low current rated welding power sources for processes that readily allow the duty cycle or rating to be exceeded.

The following should be indicated on the welding power source nameplate:

(a) I_{max} – the highest value of supply current drawn by the welding power source at its highest current setting. (I_{max} is referred to as “Rated maximum supply current” in AS 60974.1-2006)
(b) I_{eff} – the average value of supply current with duty cycle considered
(c) Duty cycle

These values are required to determine if the welding power source supply current is as stated on the nameplate. If the value of I_{eff} is not provided then it can be calculated by various methods.

AS/NZS 3000:2007 Clause 2.5.2.3 (a) (ii) provides a method for determining I_{eff} for resistance welding power sources.

The maximum current drawn from the supply at maximum welding current (I_{max}) is multiplied by the square root of the duty cycle at maximum welding current as shown in Table 4.3.

4.4.7 Installation, Operation and Maintenance
A competent person in accordance with AS/NZS 3000 must directly connect welding power sources not provided with a connecting plug to the electricity supply. Flexible, trailing cables must be used for welding power sources that are moved around.

Figure 4.1 indicates a typical method for connection of plant to the electrical supply and to work.

Do NOT connect the work terminal to electrical systems earth or to the welding power source case. Any connection between the output terminals and the welding power source case or earth, may cause potentially damaging welding currents to flow through structures, bearings, gearboxes and electronic equipment. It may also expose others to the risk of electric shock.

Where welding power sources are installed adjacent to each other, or where welders or other personnel are working in close proximity to each other, special care is required to avoid the risk of shock due to exposure to the combined voltage of the adjacent welding power sources. Open circuit voltage between electrode holders should be checked to ensure this does not exceed 113 V for d.c. welding power sources and 113 V peak 80 V r.m.s. for a.c. welding power sources, unless positive screens or barriers prevent physical contact between either welders or other personnel and workpieces (See Figure 4.2 and refer to AS 1674.2).

The voltage between the electrode holders or torches of power sources connected to the same workpiece can be up to twice the normal open-circuit voltage. This occurs where any of the following apply:

(a) d.c. power sources of different polarity are connected
(b) a.c. power sources are connected with primary cables opposed or out of phase

\[15. \text{ The work (or return) cable is commonly referred to as the "earth" in a welding circuit. This is incorrect terminology and reinforces a misunderstanding of the function of the work cable. Potentially hazardous situations are caused when welding currents find alternative return paths to the welding power source.}\]
(c) a.c. power sources are connected with secondary cables opposed and primary cables in phase.

Where primary circuits on any adjacent welding power sources are in phase, the output terminal of a.c. welding power sources shall be connected in phase. Where practiced, adjacent power sources should be connected to minimize voltage between electrode holders or torches. It is the duty of authorised personnel to ensure that an electric shock due to simultaneous contact with two electrode holders will not occur.

Correct handling and use of welding power sources together with regular maintenance and inspection are necessary to ensure safe operation. Section 4.9 lists essential safety measures with welding power sources and other electrical equipment.

The operator should carry out a pre-start check before powering up the welding equipment and commencing welding operations. Routine inspection and testing should be carried out by a competent person to ensure the electrical safety of the equipment and accessories. Refer to AS 1674.2 Section 5 for minimum frequencies and items to be checked during routine inspections. It is a requirement of AS 1674.2 that the owners of the welding power source keep suitable records of periodic tests and a system of tagging including the date of the most recent inspection.

An inspection of the work environment should be carried out to determine if all hazards, e.g. wet areas etc., are controlled before and during welding processes.

Maintenance of equipment should only be carried out by a competent person.

4.5 Wire Feeders

Where wire-feeding equipment is used in continuous wire processes, the whole coil of wire is at welding potential with respect to the work, when welding is in progress. The equipment should therefore be installed and maintained in a safe condition and in accordance with the manufacturer’s recommendations.

Guarding of the wire spool and the wire feeding mechanism is recommended to protect against the possibility of electric shock or contact with moving parts. In many workplaces guarding of mechanical components and insulation of electrical parts is mandatory, making some wire feeders unsuitable.

Wire feeders should comply with the requirements of IEC 60974.5.

4.6 Welding Cables

4.6.1 General

The electrical welding circuit consists of a “welding” cable (lead) to take the electrical output from the welding power source to the electrode holder and a “work” (or
“return”) cable to complete the electrical circuit from the work being welded back to the welding power source.

The welding and work cables must be of sufficient capacity for the welding current (Table 4.4) and the insulation must be sound.

Cables should conform to AS/NZS 1995 Welding cables. Cables should only be replaced or repaired by a competent person. Cable lengths should be as short as possible to avoid increased risk of cable damage and voltage drop. All cables should be kept clear of other personnel, walkways and areas where they can be damaged. Frayed cable or damaged insulation can cause fire or injury. Damaged cables should be repaired or replaced.

As cable length increases there is a progressive voltage drop that must be considered. Refer to AS 1674.2 Clauses 4.2.2 and 4.2.3. The maximum cable length can be calculated using the welding power source OCV, the cable resistance in Ohms/km and the welding current.

Cables should conform to AS/NZS 1995 and are not to be replaced or repaired by unauthorised personnel. Cable lengths should be as short as possible to avoid increased risk of cable damage and voltage drop, and the length of the electrode cable should not exceed 9m except with the consent of the authorised person as per AS 1674.2. All cables should be kept clear of other personnel and away from areas where they can be damaged. Frayed cable or damaged insulation can cause fire or injury. Damaged cable should be repaired or replaced.

As cable length increases there is a progressive voltage drop that must be considered. Refer to AS 1674.2 Clauses 4.2.2 and 4.2.3. The maximum cable length can be calculated using the welding power source OCV, the cable resistance in Ohms/km and the welding current.

Cables should conform to AS/NZS 1995 and are not to be replaced or repaired by unauthorised personnel. Cable lengths should be as short as possible to avoid increased risk of cable damage and voltage drop, and the length of the electrode cable should not exceed 9m except with the consent of the authorised person as per AS 1674.2. All cables should be kept clear of other personnel and away from areas where they can be damaged. Frayed cable or damaged insulation can cause fire or injury. Damaged cable should be repaired or replaced.

As cable length increases there is a progressive voltage drop that must be considered. Refer to AS 1674.2 Clauses 4.2.2 and 4.2.3. The maximum cable length can be calculated using the welding power source OCV, the cable resistance in Ohms/km and the welding current.

Cables should conform to AS/NZS 1995 and are not to be replaced or repaired by unauthorised personnel. Cable lengths should be as short as possible to avoid increased risk of cable damage and voltage drop, and the length of the electrode cable should not exceed 9m except with the consent of the authorised person as per AS 1674.2. All cables should be kept clear of other personnel and away from areas where they can be damaged. Frayed cable or damaged insulation can cause fire or injury. Damaged cable should be repaired or replaced.

Table 4.4 Capacities of Welding Cables (Leads) Based on AS/NZS 1995:2003

<table>
<thead>
<tr>
<th>Nominal Cross-sectional Area of Conductor</th>
<th>Current Rating (Amperes) at 10 Minute Duty Cycle (Note)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm²</td>
<td>100 60 30 25</td>
</tr>
<tr>
<td>10</td>
<td>90 91 99 102</td>
</tr>
<tr>
<td>16</td>
<td>125 129 145 151</td>
</tr>
<tr>
<td>25</td>
<td>165 175 206 218</td>
</tr>
<tr>
<td>35</td>
<td>205 223 270 288</td>
</tr>
<tr>
<td>50</td>
<td>260 289 361 386</td>
</tr>
<tr>
<td>70</td>
<td>325 370 471 507</td>
</tr>
<tr>
<td>95</td>
<td>390 454 590 637</td>
</tr>
<tr>
<td>120</td>
<td>455 536 705 763</td>
</tr>
<tr>
<td>150</td>
<td>535 636 843 914</td>
</tr>
<tr>
<td>185</td>
<td>600 723 968 1051</td>
</tr>
<tr>
<td>240</td>
<td>715 870 1174 1276</td>
</tr>
</tbody>
</table>

Note: Current ratings are based on 100, 60, 30 and 25% duty cycles over a 10-minute period based on a cable temperature of 90°C and an ambient air temperature of 40°C.

4.6.2 Cable Connections

Where connections to welding cables or joining of cables are required, such connections must be insulated metallic connectors of an appropriate type and current capacity. Frayed connections provide a risk of fire or electrical shock and should not be used.

When connecting to terminal posts, the use of undersized bolts or oversized washers makes an unsafe connection that is prone to work loose and overheat. Always use the correct size brass bolts, brass nuts and brass washers. All connections shall be of adequate current-carrying capacity and made so they cannot slacken or overheat under normal conditions of use.

All jointing of connectors and terminals to cables shall be made to the requirements of AS/NZS 3000. Each joint or connection shall have a resistance of not more than the equivalent resistance of a length of cable equal to the total length of the conductors that are joined.

The fitting of all hardware to cables including in-line connectors, terminal lugs, electrode holders and work clamps should be carried out by a competent person. It is commonly found that connectors have been fitted or modified, by persons who do not possess the necessary skills, in a manner that results in poor electrical conductivity that reduces overall efficiency of the circuit and causes localised overheating.

Output cable connections should have clean contact surfaces, be properly tightened and fully insulated. Connection of flexible output cables to the welding power source or to extend cables may be carried out by the welder. The power source should be switched off or otherwise isolated from the power supply before the connection or disconnection of the output cables to the output terminals.

4.6.3 Work Cable

The function of the “work” or “return” cable is to provide a safe and low resistance electrical return path from the work being welded to the welding power source. The work cable should not be referred to as the “earth” cable. It is an active part of the welding circuit and must remain insulated from earth.

Often work cables (and their connections) used in welding are inadequate. Always take the following precautions:

(a) Avoid faulty work connections – these can cause electrical shock or fire due to overheating

(b) Always connect the work cable clamp as close to the work or work table as practicable

(c) Never connect work cables to structural systems, piping in plant or the like. This practice may cause electrical shock to others, malfunction of protection control equipment, fire at another location, destroy electrical wiring or cause corrosion due to (very high) impressed electrical currents. Corrosion can occur
to hulls of ships during maintenance welding and a similar situation will occur in any situation where an electrolyte is involved in the welding circuit, such as wet floors (See also Figure 4.3)

(d) Ensure the current-carrying capacity of the work cables is not less than that of the electrode cables

(e) Fully tighten work connections so they have a firm contact and provide a good electrical connection

4.6.4 Inspection

Welding cables are easily damaged and then become an electrical hazard. Welding cables should always be inspected by the operator before use and at least monthly by a competent person in accordance with AS 1674.2.

4.7 Electrode Holders

Electrode holders shall conform to AS 60974.11 Arc welding equipment – Electrode holders.

4.7.1 Type A Electrode Holder

A type A electrode holder is an electrode holder in which no live part is accessible to the standard test finger as described in IEC 60529. Refer to AS 60974.11 Clause 3.6.

4.7.2 Type B Electrode Holder

A type B electrode holder is an electrode holder in which, deviating from type A, no live part is accessible at the head to a sphere with a diameter related to the maximum diameter of the electrode (Refer to AS 60974.11 Clause 3.7 and Clause 8.1 b).

4.7.3 Protection Against Electric Shock

4.7.3.1 Protection From Direct Contact

It is a requirement of AS 60974.11 that:

“In order to meet the requirements of AS 60974.11, an electrode holder without an electrode, fitted with a welding cable of minimum cross sectional area as specified by the manufacturer, shall be protected against unintentional contact with live parts.

In the case of type A electrode holders, this requirement is also valid for the part of the electrode inserted into the electrode holder. Electrodes having the minimum and maximum diameter as specified by the manufacturer shall be tested.

Conformity shall be checked by testing as specified in AS 60974.11

The springs not designed for carrying the welding current shall be insulated from other metal parts of the electrode holder.

Conformity shall be checked by visual inspection.”

4.7.3.2 Insulation Resistance

It is a requirement of AS 60974.11 that:

“The insulation resistance shall, after the humidity treatment, be not less than 1 M Ohm.”

4.7.3.3 Dielectric Strength

It is a requirement of AS 60974.11 that:

“The insulation shall withstand an a.c. test voltage of 1,000 V r.m.s. without flashover or breakdown. Any charges unaccompanied by a voltage drop are disregarded.”

4.7.4 Dimensional Requirements for an Electrode Holder

Refer to AS 60974.11 Table 1 for dimensional requirements. Conformity shall be checked by measurement.

4.7.5 Marking

It is a requirement of AS 60974.11 that:

“The following information shall be legibly and indelibly marked on each electrode holder:

(a) Name of the manufacturer, distributor, importer or the registered trade mark;

(b) Type (identification) as given by the manufacturer;

(c) Rated current;

(d) Reference to this part of IEC 60974, confirming that the electrode holder complies with the requirements.

Example:

STAR
B 200 / IEC 60974-11

This example is for an electrode holder with the trade mark STAR being of type B, having a rated current of 200 A and complying with this part of IEC 60974.”

4.7.6 Electrode Gripping/Clamping Action

Spring or screw gripping/clamping action types are preferred as they provide more uniform contact with the electrode and less overheating of the holder.
There are no spring clamp type electrode holders known to comply with the requirements of AS 60974.11.

4.7.7 Cable, Anchorage and Connection
The cable to the holder should be light and flexible to avoid operator fatigue. Although the anchorage of the cable to electrode holder is required to fulfil test requirements on manufacture to AS 60974.11, frequent flexing and use may result in breakage of the cable wires, deterioration of the anchorage or exposure of the electrical conductors. This causes overheating of the holder, discomfort and risk of shock.

Broken cable wire or insulation may be repaired by removing the damaged part of the cable. Deterioration of the anchorage may require the electrode holder to be replaced.

4.7.8 Routine Inspection
This should include checks for:
(a) Loosened metallic screws in the holder
(b) Burnt or cracked insulation that exposes electrical conductors
(c) Overheating and damage at cable connections

4.7.9 Use
Holders can be damaged by careless use, throwing or dropping. Care should therefore be exercised in handling this equipment. Welding electrodes should be removed from holders after use.

4.8 Welding Torches and Guns
Welding guns are used in continuous wire welding processes and welding torches in gas tungsten arc (TIG) welding. Construction can be complex where provision for gas shielding and water-cooling is also required.

For safe use:
(a) Amperage rating and duty cycle specified by the manufacturer should be adhered to
(b) Maintenance procedures specified by the manufacturer should be observed and no modifications attempted
(c) Heat shields or cooling devices provided should be maintained and always used where necessary to prevent discomfort or burning of skin or deterioration of the equipment

For additional information refer to IEC 60974-7 – 2005.

4.9 Shielding Gas Cylinders and Pressure Hose
Shielding gas cylinders and pressure hose are required for external gas shielded welding processes and water-cooled torches. Hose types are generally designed for use with specific gases only and they should not be used for other gases unless approved by the supplier. To avoid leakage of gas or water, only approved, well-maintained hose should be used, together with correct fittings. See Chapter 5 for requirements for cylinders, hoses and fittings and their proper use.

Pressure hoses could comply with AS 1335 Hose and hose assemblies for welding, cutting and allied processes.

4.10 Safe Installation, Maintenance and Use of Arc Welding, Arc Cutting and Air-Arc Gouging Equipment
The following precautions apply to all electrical equipment i.e. welding power sources, wire feeders, supply cables, welding cables, electrode holders and guns.

4.10.1 Management
(a) All operations must be carried out in a safe manner and in a safe workplace. Particular requirements in respect of electrical shock, radiation, fire and explosion are given in Chapters 14 to 16
(b) All welders should be provided with, or have access to, printed instructions concerning safe operations with the equipment being used. Special measures may be required for personnel having English as a second language
(c) Metal or metal oxide dusts may be hazardous with regard to fire, explosion or detrimental to the health of operators. Accumulation of dusts, especially in certain combinations, should be regularly cleaned up and recommendations in Sections 16.3 and 19.6 observed
(d) Under no circumstances should welding plant be moved whilst the electrical supply is connected to it
(e) Special provisions related to the location of the work, e.g. at heights or within vessels, as outlined in Chapters 20-28, should be understood and adhered to.

(f) The type of material being welded or cut can influence the necessary safety provisions (See Chapter 13)

(g) Fume generated is dependent upon processes and materials and requires a fume control plan (See Chapter 17)

4.10.2 Installation and Handling of Equipment Connected to Electrical Supply

(a) Ensure equipment has the required voltage and current capacity

(b) Connect to main supply safely and locate safely (Section 4.3). Only an authorised person can install such equipment

(c) Locate main switch adjacent to equipment to allow ready isolation from supply

(d) Ensure correct earthing of welding power sources and wire feeders

(e) Check welding and work cables for full insulation along their length. Do not use damaged or worn cables

(f) Locate welding and work cables safely to avoid damage. In wet conditions run cables above the wet surface out of contact with the water

(g) Ensure work cable is secure (Section 4.6.3)

4.10.3 Installation and Handling of Engine Driven Equipment

(a) Check capacity and electrical requirements as in Section 4.6

(b) Locate engine so persons are not exposed to exhaust gases and excessive noise

(c) Locate on level base and prevent any possibility of plant moving e.g. by chocking wheels

(d) Locate where protected from weather. If outdoors, equipment may require temporary shelter

(e) Electrical connections etc. as for equipment in Section 4.6

(f) Ensure fuel tank has no leaks and cooling fan is guarded

4.10.4 Maintenance and Inspection by Maintenance Personnel

Mobile welding power sources should be inspected on a minimum three-monthly basis. Fixed equipment should be inspected on a minimum annual basis. Refer to AS 1674.2 Section 5 for more details on inspection required.

Some recommendations for routine maintenance and inspection checks are:

(a) Implement routine periodic inspection, maintenance and repair carried out by competent persons

(b) Keep records of inspection, maintenance and repair

(c) For engine driven equipment, also carry out routine inspection and maintenance on the engine

(d) Implement routine checks of oil level and moisture content in oil cooled transformers

(e) Clean equipment by periodically blowing out with, for example, reduced pressure compressed dry air with safety nozzles. Do not use other gases for this purpose. Increased frequency of cleaning is required where metallic dust may be present. PC boards may be adversely affected by dust

4.10.5 Safe Operation by Welders and Operators

4.10.5.1 Pre-Start Inspection of Welding Equipment

Before using any electric welding equipment the welder or operator of that equipment should carry out a pre-start safety inspection.

(a) Power supply – disconnect and isolate the power supply to the welding power source prior to performing these pre-start checks

(b) Mains supply socket and switch – inspect for any obvious damage and defects to switch or socket. Ensure the correct size plug is fitted for the welding power source for the rated current and duty cycle of the welding power source. Refer to AS/NZS 3000

(c) Plug and primary cable supply to the welding power source – check the power supply cable is of the correct rating for the welding power source and for any damage to plug. Special attention should be given to any cuts, burns, abrasions, and fraying or other damage to the cable insulation, which may expose live wires. Ensure the mains supply cable is located away from welding cables and connections. Ensure the cable is securely anchored onto welding power source and plug. Refer to AS/NZS 3100

(d) Welding power source – inspect the welding power source for obvious damage to the cabinet, power switches, indicator lights or controls. Refer to AS 60974.1 or AS 60974.6

(e) Welding cable connections – ensure that welding cable connections to the welding power source are in good condition; contact surfaces are clean and are properly tightened. If terminal posts are used ensure only brass washers and the correct insulated type brass nut is used. Any unused terminal posts shall have an insulated brass nut in place. Ensure that all connections are fully insulated and cables are firmly anchored to fittings. For a.c. output welding power sources check that electrode and work cables are correctly connected to the welding power source. For d.c. output welding power sources check polarity and ensure electrode and work cables are correctly connected for the procedure in use and that any other d.c. welding power sources in the vicinity are connected with the same polarity. Refer to AS 1674.2

(f) Welding cables (electrode and work cables) – examine all cables (leads) for damage such as cuts or abrasions, burns, damaged insulation or frayed wires or any other damage that may expose live wires. Elec-
trode and work cables should be of similar length. Electrode and work cables should be of the same current carrying capacity and rated for the maximum current rating and duty cycle of the welding activity. Building steelwork shall not be used as a work return path. Refer to AS/NZS 1995 and AS 1674.2

(g) Welding cable extension connections – check that both the male and female connections are fully insulated with clean contact surfaces and all fittings are tightened properly with no conductors exposed. Refer to AS 1674.2

(h) Welding hand pieces – check that the welding hand piece is in good condition and is fully insulated. The hand piece must be rated for the maximum current rating and duty cycle of the welding activity. Cracked or damaged hand pieces shall be taken out of service immediately. Refer to AS 60974.11

(i) Work clamp – check that the work-return clamp or connection is securely connected to the work cable and the job close to the welding activity. Refer to AS 1674.2

(j) Engine drive welding power sources – check that all exhaust fume emissions are dispersed away from the work area and any other personnel working in the immediate vicinity. Do not use in an enclosed area or building

(k) Hazard Reduction Device (HRD) – if a HRD such as a positive isolation switch or voltage reducing device (VRD) is used, ensure that the indicator lights or voltmeter are functioning and indicating low voltage or zero voltage (Safe green) and high or welding voltage (Unsafe green flashing or red) condition as the welding power source is operated in a normal welding cycle.20

(l) Electrical inspection tag – check that a current electrical inspection tag, traceable to your equipment maintenance register, is attached to the welding power source. See Footnotes 21, 22, 23

4.10.5.2 Safe Working Practices by Welders and Operators

(a) Ensure the welding power source is in good condition before use. Tag defective equipment so it cannot be used before it is repaired

(b) Use only insulated cable as per Table 4.4 for the welding and work cables. Avoid using bare metal straps as a work cables. Never use gas or water pipes as part of the welding circuit. Connect the work cable as close as possible to the weld location. Ensure the welding power source work terminal is connected only to the workpiece or pieces being joined

(c) It is a good practice to equipotential bond the workpiece to other conductive structures in the vicinity of the welding work. This is particularly important when working from an elevated work platform or a boom lift. Equipotential bonding cables should have at least the same capacity as the welding cable and be clearly marked to distinguish them from the work cable

(d) Connect all cables, including the electrode hot box, if it is powered by the welding power source output, before turning on the power source. All 240 V outlets from a welding power source should be RCD protected. All cables should be checked for sound insulation and tight connections after every break in work. Poor connections in the electrode and work circuit generate resistive heating, increase the risk of fire, damage to equipment, electric shock and electrocution as well as reduce the performance of welding arcs by introducing voltage and current drops

(e) Keep welding cables as short as possible. Only coil them using a pattern to minimise inductance (See Figure 4.5). Tangles of cables can overheat. Keep connection points (work cable clamp, welding power source terminals, etc.) clear of flammable materials, particularly insulated electrical cables, compressed air, oxygen and flammable gas hoses

(f) Be especially careful with welding processes such as manual metal arc welding or air-arc gouging, which have a live electrode holder whenever the power source is turned on. (See Section 14). Ensure a HRD is used in accordance with requirements of AS 1674.2

(g) Do not drag live welding cables to the work. Ensure the electrode holder has no electrodes in it before turning on the welding power source

(h) Remove stubs from electrode holders before placing the electrode holder on the job

(i) Ensure the welder and any other personnel in the vicinity of welding operations are properly insulated from the workpiece. Use heat resisting mats, wooden duckboards or other means as insulation from the job and flooring. Wear at least two layers of dry clothing including dry leather jackets and rubber soled safety boots. If insulation from the earth and job is difficult, ensure the welding power source has suitable IP23 rating, in accordance with AS 60529, for hazardous environments

(j) Use welding gloves on both hands, for handling the electrode holder or gun, and when changing electrodes. Welding gloves need to be dry and free from holes

20. This check is done with power on. Refer AS 1674.2

21. If on completion of this pre-start checklist you are unsure of the safety of any part of this equipment – DO NOT USE. Isolate the equipment and notify your supervisor immediately, in order that remedial action can be taken.

22. Fumes are generated by hot-work. Take adequate precautions to limit exposure to fumes from welding consumables or surface coatings and contaminants.

23. Ensure that you have all necessary Personal Protective Equipment in place.
(k) Do not hold electrodes or electrode holders under the armpit while changing them

(l) Do not wrap the electrode cable around any part of the body

(m) Keep the welder and the work area dry. Do not use leaking water-cooled equipment. Dry up any condensation. Keep clothing and gloves dry from perspiration. Avoid working in rain or close to water. (See Chapter 14). Do not cool the electrode holder with water

(n) Work in a tidy manner. Where there are multiple welders or other personnel and multiple welding power sources, know which cables belong to each welding power source and keep them separated. Discard hot stub ends, off-cuts, and wire snips into a suitable receptacle, not on the floor. They can cause slipping

(o) When MMAW is finished or interrupted, switch off the power source and remove the electrode stub from the electrode holder

(p) Only use welding equipment for its intended purpose. Misuse, such as lighting cigarettes or horseplay, can lead to severe burns, electrocution, arc flash and damage to equipment

(q) Be aware of the possible impact from spatter e.g. glass fracture, ignition of flammable insulation materials, and damage to painted surfaces

4.10.6 Further Information

For welding electrical safety see also AS 1674.2 and WTIA TN 22 particularly in relation to hazard reducing devices, effects on the human body, and case studies of electrical accidents.
5.1 Introduction

This Chapter refers to safety measures for those processes that use a flame to provide the heat required for welding, brazing, soldering, heating, metal cutting and gouging applications. It also refers to similar applications e.g. flame straightening, bending, preheating and post weld heat treatment (PWHT).

The heat source is produced in the majority of applications by mixing compressed oxygen with a fuel gas and igniting the resulting mixture. Some additional processes may use the oxygen content of atmospheric or compressed air instead of pure compressed oxygen, but the same general principles apply.

Some other welding processes, but non-flame applications, involving compressed inert gases are partially treated here for convenience due to the similarities in dealing with high-pressure gas cylinders and gas reticulation systems; hence this Chapter also provides general information on the storage of gas in cylinders, including flammable gases, non-flammable gases and inert gases used in welding and allied processes.

When using any of these processes, particular safety considerations apply in respect of:

(a) Burns from flames, hot objects, malfunctioning hand-held equipment, molten particles etc.
(b) Explosion from mixed gas concentrations created by fuel gas leakage from cylinders, bulk supplies, hoses, welding equipment breakable connections, etc.
(c) Fire caused by ignition of flammable materials, leakage of fuel gases, contact with hot slag, welding equipment in poor condition etc. Plant, buildings, ship and bushe fires have occurred
(d) Ignition of materials not normally considered flammable due to oxygen enrichment (See Sections 5.2.2 and 5.6.3)
(e) Violent rupture or explosion of components due to being pressurised beyond their design pressures
(f) Asphyxiation due to displacement of atmospheric, breathable air by inert or toxic gases, e.g. leakages in confined spaces or lack of oxygen resulting from excessive rusting in confined spaces (Chapter 20)
(g) Radiation damage (to eyes principally)
(h) Fumes originating from the particular materials being welded, heated or cut
(i) Electric shock that could result when gas welding or cutting on cables or other conductors at high voltage
(j) Influence on the workplace from the above hazards (containers, vessels, heights, etc.). Refer to Chapters 20-28 for details relating to the workplace
(k) Production of flammable gases such as hydrogen and carbon monoxide due to incomplete combustion of fuel gas (especially when preheating)

5.2 Gas Properties and Particular Hazards

5.2.1 Gases Used

The flames used in gas welding, cutting and allied processes are obtained by the ignition of mixtures of oxygen or air and appropriate fuel gases; the most common being acetylene, LPG, natural gas and hydrogen.

All of these fuel gases, especially when mixed with compressed oxygen or air, are capable of releasing very large amounts energy in the form of heat or explosion, requiring minimum energy to start the reaction.

Accordingly, fuel gases should be treated with great care and in accordance with well-defined safety procedures.

Some industrial gases may be flammable, oxidising, toxic or corrosive, and users need to take special precautions in handling them. Users should always have on hand Material Safety Data Sheets, normally available from Gas Suppliers, for each of the gases stored and used at any location.
Table 5.1 Physical and Safety Properties of Gases

<table>
<thead>
<tr>
<th>Property</th>
<th>Oxygen (O₂)</th>
<th>Acetylene (C₂H₂) Note 1</th>
<th>LP Gas (CH₃CH₂CH₃) (C₂H₂) Note 2</th>
<th>Natural Gas (CH₄) Note 3</th>
<th>Hydrogen (H₂)</th>
<th>Town Gas Mixture Note 4</th>
<th>Non-Flammable Gases for Gas Shielding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density relative to air</td>
<td>1.103</td>
<td>0.901</td>
<td>1.52 to 2</td>
<td>0.55 app.</td>
<td>0.070</td>
<td>0.5 app.</td>
<td>1.38</td>
</tr>
<tr>
<td>Ignition (flammability) limits V% – in air</td>
<td>2.3 to 80*</td>
<td>1.7 to 10.9</td>
<td>4.4 to 17.0</td>
<td>4 to 77</td>
<td>6 to 32</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ignition (flammability) limits V% – in oxygen</td>
<td>3.0 to 95</td>
<td>2 to 57</td>
<td>5 to 60</td>
<td>5 to 94</td>
<td>8 to 70</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ignition temp °C – in air</td>
<td>305</td>
<td>466</td>
<td>537</td>
<td>585</td>
<td>560</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ignition temp °C – in oxygen</td>
<td>296</td>
<td>455</td>
<td>506</td>
<td>585</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Flame temp in air (Note 5)</td>
<td>2500</td>
<td>1980</td>
<td>1950</td>
<td>2210</td>
<td>~ 1650</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Flame temp in oxygen (Note 5)</td>
<td>3480</td>
<td>2526</td>
<td>2750</td>
<td>3200</td>
<td>~ 2000</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Smell</td>
<td>Odour-less</td>
<td>Pungent (Sweet)</td>
<td>Pungent</td>
<td>Odour-less</td>
<td>Pungent</td>
<td>Odour-less</td>
<td>Slightly acid</td>
</tr>
<tr>
<td>Colour</td>
<td>Colour-less</td>
<td>Colourless</td>
<td>Colourless</td>
<td>Colourless</td>
<td>Colourless</td>
<td>Colourless</td>
<td>Colourless</td>
</tr>
<tr>
<td>Gas cylinder colour (AS 4484)</td>
<td>Black</td>
<td>Maroon</td>
<td>Silver/Grey</td>
<td>Signal Red</td>
<td>—</td>
<td>Peacock blue</td>
<td>Green/ Grey</td>
</tr>
<tr>
<td>Regulator colour (AS 4267, AS 4840) – formerly 4840</td>
<td>Black</td>
<td>Red</td>
<td>Orange</td>
<td>Red</td>
<td>Red</td>
<td>Blue</td>
<td>Green/ Grey</td>
</tr>
<tr>
<td>Welding Hose colour (* AS 1335, ** AS 1869)</td>
<td>Blue*</td>
<td>Red*</td>
<td>Orange* **</td>
<td>N/S (Note 6)</td>
<td>N/S</td>
<td>Black*</td>
<td>Black*</td>
</tr>
<tr>
<td>Safety device colour (AS 4603)</td>
<td>Blue</td>
<td>Red</td>
<td>Red</td>
<td>Red</td>
<td>Red</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Blowpipe inlet valve colour</td>
<td>Blue</td>
<td>Red</td>
<td>Red</td>
<td>Red</td>
<td>Red</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Connection thread for fittings and hoses</td>
<td>RH</td>
<td>LH</td>
<td>LH</td>
<td>LH</td>
<td>RH</td>
<td>RH</td>
<td>RH</td>
</tr>
</tbody>
</table>

26. Flammability limits, also called flammable limits, give the proportion of combustible gases in a mixture, between which limits this mixture is flammable on contact with an ignition source. Gas mixtures consisting of combustible, oxidizing, and inert gases are only flammable under certain conditions. The lower flammable limit (LFL) describes the leanest mixture that still sustains a flame, i.e. the mixture with the smallest fraction of combustible gas, while the upper flammable limit (UFL) gives the richest flammable mixture. There is a quantitative difference between flammability limits and explosive limits. In an explosive mixture the fuel oxidizer mixture is closer to stoichiometric proportion. This difference has no practical application in safety engineering as the flammable vapour cloud is turbulent and the exact mixture of fuel and oxidizer varies greatly. Therefore, many references use the term flammability limit (LFL, UFL) and explosive limit (LEL,UEL) interchangeably.

NOTES
1. Acetylene* is quite unstable and can ignite by decomposition at pressures above 200 kPa, therefore the UEL is considered to be 100% if the ignition source is of sufficient intensity. Many references therefore quote the flammability range in air as 2.3% to 100%
2. LP Gas consists primarily of Propane (CH₃CH₂CH₃ or C₃H₈) – other constituents include artificial odourises for safety
3. Natural Gas consists primarily of Methane (CH₄) and contains artificial odourises for safety
4. Town gas composition varies but consists chiefly of methane (CH₄), Hydrogen (H₂) and carbon monoxide (CO). Town and coal gas are similar
5. Approximate calculated adiabatic values only – there is considerable scatter in the literature
6. N/S = Not specified in this document
7. Also regarded as the lower explosive limit (LEL) and the upper explosive limit (UEL). Below the LEL the mixture is too lean in fuel to burn and above the UEL the mixture is too rich in fuel to burn26
The properties of these and other commonly used gases are listed in Table 5.1. A summary of the properties, characteristics and hazards of the more common gases used in gas welding, cutting and allied processes are given below.

5.2.2 Oxygen

Cylinder colour is black. Oxygen has no smell, and is generally considered non-toxic at atmospheric pressure.

Oxygen normally constitutes 21% of air and when the concentration of oxygen exceeds 21%, flammable materials become increasingly easier to ignite and burn more rapidly and with a higher flame temperature. Oxygen itself does not burn, but supports and accelerates combustion in other substances including those not normally considered combustible, which may be readily ignited by sparks. Metals may also burn. Hence, great caution must be exercised in preventing oxygen enrichment of the atmosphere, particularly in confined space situations. Oxygen should never be called “air”.

Oxygen in contact with oil, grease, other hydrocarbons or oil-based substances can cause spontaneous ignition and consequential fire or explosion. Hence all oxygen systems (e.g. cylinders, pipework, regulators, and blowpipes) must be kept completely free of oil or grease.

Proper advice should be sought, e.g. from Gas Suppliers and Equipment manufacturers, before using any materials for oxygen service, especially lubricants, seals and thread sealants, including PTFE tape, that have not been supplied for use with oxygen and marked accordingly.

When the oxygen concentration in the atmosphere is less than 21%, gradual and sometimes undetectable changes occur in operator’s alertness and efficiency.

Each year many accidents ranging from minor to fatal types occur through either misuse of oxygen or failure to understand its properties and their significance.

Some lessons that have been learnt through misuse or unsafe use of oxygen (Reference 4) are:

(a) Do not use oxygen to refresh air – there is often a temptation to use oxygen to ‘sweeten’ air when welding or cutting operations have been carried out in confined spaces. Large amounts of oxygen can be released locally in a short time from gas cylinders under pressure. In one situation where this was done, hot-work in the form of flame cutting was carried out with a subsequent ignition of worker’s clothes and fatal burns

(b) Take care in confined spaces - do not leave blowpipes or hoses connected to the supply gases within confined spaces during work breaks or overnight. Even slow leaks can result in very hazardous situations, with possible fire and explosion on re-ignition of the blowpipe

(c) Ventilate confined spaces - in flame cutting not all of the oxygen released from the cutting nozzle is necessarily used in cutting. In confined spaces this may result in a dangerous increase in oxygen content in the air, pointing to the need for adequate ventilation in such situations

(d) Do not use oxygen as a substitute for compressed air - there are many examples of this situation where oxygen has been used, such as in cleaning, resulting in serious and fatal accidents due to fire or explosion from spontaneous ignition. Never use oxygen to start engines, drive air tools etc.

(e) Do not use oxygen or compressed air to dust off clothes - clothes can become readily flammable and even self-igniting through oxygen enrichment

(f) Do not kink pressure hoses - kinking or nipping hoses to interrupt gas flows or whilst changing torches is a very dangerous practice. Gas can still bleed through the system, or more seriously, escape rapidly should the operator lose his grip or the hose rupture

5.2.3 Fuel Gases

Each of the fuel gas-oxygen combinations warrants care in use, from handling of the gas supplies through to the point of intended ignition. There are greatly increased risks of fire and explosion in the case of leaks. Asphyxiation is also possible due to exclusion of air in leakage situations.

The precautions in Section 5.2.2 (b), (c) and (f) therefore apply equally to the use of all fuel gases.

All fuel gases have special properties that warrant additional precautions.

5.2.3.1 Acetylene

Industrial grade acetylene is a highly flammable, colourless, non-toxic, and slightly lighter than air gas, with garlic-like odour. It is an unstable gas at ambient temperature and pressure and it becomes very unstable at elevated temperatures and pressures.

(a) Chemistry – Acetylene has the chemical symbol \(\text{C}_2\text{H}_2 \) and is considered to be the simplest of all alkenes with just two carbon atoms and two hydrogen
atoms. It is an unsaturated hydrocarbon with the two carbon atoms being joined by a triple covalent bond. This triple bond is useful in that it stores substantial energy that can be released as heat during combustion. However, the triple carbon bond is unstable, making acetylene gas very sensitive to conditions such as excess pressure, excess temperature, static electricity, or mechanical shock.

(b) Decomposition – Acetylene is different from other commonly used flammable gases because, due to the carbon-to-carbon triple bond, acetylene gas is fundamentally unstable and will decompose in the absence of air or oxygen into its constituent elements, carbon and hydrogen, with the evolution of large amounts of energy in the form of heat and light, which can lead to further percussive explosions. Extreme heat and/or massive mechanical shock can initiate this decomposition.

Acetylene can explode with extreme violence if the pressure of the gas exceeds about 200 kPa (29 psi) as a gas or when in liquid or solid form. Thus it is important to observe the maximum allowable pressures of 150 kPa downstream of an acetylene regulator.

(c) Combustion – Combustion of acetylene with oxygen produces a flame of over 3600 K (3300°C, 6000°F); releasing 11.8 kJ/g, Oxyacetylene is the hottest burning common fuel gas. Acetylene is the third hottest natural chemical flame after cyanogen at 4798 K (4525°C, 8180°F) and dicyanoacetylene’s 5260 K (4990°C, 9010°F).[1]

(i) Flammability in Air – Acetylene is extremely flammable in air, forming flammable mixtures from a lower explosive limit (LEL) of 2.3% to an upper explosive limit (UEL) of 80%. Acetylene has a wider range of flammability than hydrogen or carbon monoxide and the range is very wide range compared to other commonly used hydrocarbon gases. Refer to Figure 5.1.

Although acetylene is slightly lighter than air, for practical purposes, if it has leaked it will mix with the air and it is wise to assume it will be present in an explosive mixture.

Remember that acetylene is quite unstable and can ignite by decomposition at pressures above 200 kPa; therefore the UEL is considered to be 100% if the ignition source is of sufficient intensity. Many references therefore quote the flammability range in air as 2.3% to 100%.

(ii) Flammability in Oxygen – Acetylene, in common with other flammable species, has a considerably wider flammable range, from an LEL of 3% to an UEL of 95%, in oxygen. Other common hydrocarbon gases also have a much wider range of flammability when mixed with oxygen; however, the range is always less than the flammable range of acetylene in air. Refer to Figure 5.2.

Acetylene in air is flammable in a significantly wider range of concentrations than other common hydrocarbon gases mixed with oxygen.

(iii) Ignition Temperature – The auto ignition temperature for acetylene is very low at around 300°C (various sources range from 296°C to 325°C). Acetylene is also a very easy gas to ignite. The energy required of a static spark capable of igniting acetylene is lower than for any other fuel gas except hydrogen. The ignition energy of acetylene in air is approximately seventeen times lower than that required for methane. The static charge developed by a person walking across a carpet floor on a dry day can be 1700 times greater than that needed to ignite acetylene. When acetylene is mixed with pure oxygen, the ignition energy is almost 100 times lower than it is in air.

A wide range of sources can ignite acetylene including:

• direct flame
• hot metal
• static discharge from a human finger or clothing
• sparks, e.g. from aluminium rubbing on rusty steel
• friction
• shock

(iv) Rate of Combustion Reaction – As a consequence of its simple chemical makeup and sensitive triple bond, acetylene burns at a very fast rate. This very fast burning rate can accelerate the rate at which pressure is generated in an explosion beyond what would occur for other fuels. This, in turn, can make acetylene explosions more violent than for other fuels.

(v) Flame Velocity – The oxyacetylene flame travels at 7.4 m/s. The velocity of the mixed gases flowing within the blowpipe must be greater than the flame velocity or flashback will occur.

(d) Safe Use – Acetylene cylinder colour is claret. Acetylene has a distinctive garlic smell. It is non-toxic, but asphyxiation is possible through depletion of oxygen.

Acetylene is lighter than air and not likely to collect in ducts and drains, but could collect in roof spaces. It requires minimum energy to ignite in air or oxygen. A concentration of as little as 2.5% in the air can burn. Acetylene is a potential fire and explosion hazard. Adequate ventilation and leak free systems are required. Hot metallic particles or hot slag can cause ignition of leaks remote from the area where welding or cutting is taking place.

This gas, in its free state under pressure, may decompose with explosive violence. For this reason it is supplied in special cylinders (Section 5.3.3). Explosions can occur in pure acetylene subjected to excessive temperature or pressure. Mechanical shock to the cyl-

27 “Acetylene systems shall not be used at flowing pressures exceeding 150 kPa downstream of the outlet of the pressure regulator” Refer AS 4839 – 2001.
Hydrogen is much lighter than air. A concentration of as little as 4% in air can burn. It is a fire and explosion hazard, and has very low ignition energy. The absence of a warning odour and its very low density combined with the possibility of explosion requires special attention in obtaining highly leak-tight distribution systems.

It burns with a very pale blue flame that is almost invisible and may be difficult to see under some working conditions.

Hydrogen cylinder valves should never be cracked open to let out an amount of gas to clean the valve outlet (“sniffing”), as the gas may self-ignite in air on release from the cylinder valve.

5.2.4 Shielding Gases

These gases are used to shield particular arc welding processes or hot operations on certain materials. They are usually inert and non-flammable and are stored in high pressure gas cylinders (See Table 5.1)

Cylinders should always be restrained against toppling. There is an increased possibility of toppling when hoses are attached if the hose exerts force on the top of the cylinder. When cylinders fall over there is a risk that the neck will fracture allowing an uncontrolled and rapid release of a significant volume of gas at high pressure.

Shielding gas cylinders are filled at similar pressures to oxygen cylinders and while there is no fire and explosion hazard if the contents are released suddenly, there is the same potential for mechanical damage due to the cylinder rocketing away and asphyxiating of people in the vicinity if in an enclosed area.

5.5 Gas Supply

5.3.1 General

Gases used in gas welding, cutting and allied processes are delivered to the point of use either from portable compressed gas cylinders, supplying generally only one application, or from reticulation systems supplying an entire workshop. Where cylinders are used it is important that at all times cylinders are secured to prevent toppling.

Gas reticulation systems may be supplied from manifolded gas cylinders, bulk gas vessels or from mains pressure supply.

(a) Cylinders (single or manifolded) are used in the majority of workshops. Details of safe supply, usage, etc. are given in Sections 5.3.3, 5.3.4 and 5.3.6.

(b) Bulk gas installations of liquid oxygen, in special insulated low temperature storage vessels, or of liquefied petroleum gas in pressure vessels, are used in most large shops. General safety provisions are given in Section 5.3.2 and 5.3.5.

(c) Mains pressure supply of town or natural gas may be used where available in larger shops.

5.3.4 Hydrogen

Cylinder colour is signal red. Hydrogen has no smell and is non-toxic.

5.2.3.3 Natural gas

Not normally supplied in cylinders for gas welding processes. It is available from gas reticulation systems at different supply pressures.

Natural gas is a mixture of gases and its main constituent is methane.

It is lighter than air and not likely to collect in ducts and drains, but could collect in roof spaces. It requires minimum energy to ignite in air or oxygen. A concentration of as little as 5% in the air can burn. Natural gas is a potential fire and explosion hazard.

5.2.3.4 Hydrogen

Cylinder colour is signal red. Hydrogen has no smell and is non-toxic.

28 Acetylene is an unstable gas that can suddenly decompose in the form of a deflagration or detonation. Therefore large volumes should not be stored in piping systems and vessels and care must be taken to prevent ignition sources, including accidental heating of pipes and electrostatic sparks.
5.3.2 Bulk Gas Supply

Bulk gas installations and acetylene generating plant safety provisions include:

(a) Authorised personnel only are permitted to operate this plant.

(b) Manufacturer’s instructions must be available and followed.

(c) Location must meet all statutory requirements and manufacturer’s provisions. Particular mention is made of AS/NZS 1596 The storage and handling of LP Gas.

(d) Fire protection including fire fighting systems, location of signs, and cleanliness of workplace and absence of ignition sources must comply with all statutory requirements and manufacturer’s provisions.

(e) Reporting of any abnormalities in the functioning of either a bulk installation or generating plant must be immediately reported to a responsible person. Emergency telephone numbers must be prominently displayed.

5.3.3 Cylinder Types and General Care

Cylinders used for oxygen, acetylene, LPG, hydrogen or other gases, are in effect thin walled highly pressurised vessels. Due to the presence of gases under pressure, full or partially filled cylinders can cause serious injury or damage should they rupture.

Also, slow leakage of gas may result in a high risk of fire or explosion or the possibility of asphyxiation. Oxygen, hydrogen, carbon dioxide and inert gas cylinders are fitted with a bursting disc safety device. LPG cylinders have a spring-loaded pressure relief valve.

Acetylene cylinders differ from those used for other gases in that they are filled with a porous substance saturated with acetone in which the acetylene is dissolved under pressure. Acetylene is unstable and highly reactive at high pressure. The porous substance or filler is therefore intended to quench heat of spontaneous decomposition and reduce the risk of explosion. Fusible safety plugs are fitted in the shoulder of the cylinder to permit the gas to escape, rather than have the cylinder explode in the event of overheating (See Section 5.6.5).

Because of these factors and the particular properties of the stored gases (Table 5.1), particular care is always required in the handling and usage of cylinders as follows:

(a) Cylinders are generally obtained on loan or hire from gas suppliers. This enables the periodical testing specified in Australian Standards and statutory regulations to be carried out by the owner following and before refilling exchange.

(b) Do not tamper with the markings or colour coding of cylinders. Do not use cylinders without labels/colour code. If the labelling has been damaged or markings are illegible, do not guess contents – return any damaged cylinders to the supplier.

(c) Refilling of cylinders must only be carried out by competent organisations with the correct gas and with the owner’s approval. Refilling with any other gas is not permitted.

(d) Gas should only be used for the particular intended purpose, e.g. never use oxygen for cleaning (dusting), or to provide ventilation or to support breathing (See Section 5.2.2).

(e) Gases should only be identified by their correct name so as to avoid dangerous mix-ups.

(f) Never attempt to disguise or repair damage to a cylinder such as denting. Such cylinders must not be used until advice is obtained from the gas supply company.

(g) Care is required to ensure valve seats and outlets are protected by keeping all kinds of contamination away from cylinders, especially during connection and disconnection. Grit, loose fibres, hydrocarbons and other dirt may lodge in connectors and on valve seats causing leaks or may be picked up by high velocity gas streams, causing hot spots in regulators potentially resulting in ignition (Section 5.6.3). Organic matters such as oil, grease and hydrocarbon liquids that may ignite spontaneously in high-pressure oxygen is another hazard to regulators and other downstream equipment (Section 5.6.3). Any damage to valves or outlets should be reported.

(h) Avoid flame impingement from the welding or cutting blowpipe. Keep cylinders away from all sources of artificial heat (furnaces, boilers, radiators, flames). The fusible plugs at the top of an acetylene cylinder are particularly sensitive to heat and operation can lead to an extensive acetylene flame vertically from the top of the cylinder.

(i) Do not tamper with safety devices.

(j) Return cylinders with the valve closed.

5.3.3.1 Oxygen Cylinders

(a) Cylinder colour – black.

(b) Filling pressure – 17,500 kPa @ 15°C, (17,500 kPa – 17.5 MPa – 175 Bar ~ 2,500 psi).

(c) Right hand thread.

(d) Plain nuts on connectors.

(e) Safety devices:

(i) Plastic tag that indicates when the cylinder has been subjected to excessive temperature.

(ii) Bursting disc that relieves pressure at 26,000 – 28,000 kPa.

(f) Stored in a secure upright position.
(g) Stored in a cool well-ventilated area
(h) Stored separately from flammable gases such as acetylene or LPG
(i) When used in combination with fuel gases (Acetylene, LPG, Hydrogen) it is used for welding, cutting, hardening, scarfing, flame cleaning and heating
(j) High pressure compressed gas vigorously supports combustion of materials that would not normally burn in air

5.3.3.2 Acetylene Cylinders
(a) Cylinder colour – Crimson/Maroon
(b) Acetylene gas is dissolved in acetone and stored within a porous mass (more stable)
(c) Fill pressure – up to 1,500 kPa. (1,500 kPa – 1.5 MPa – 15 Bar ~ 220 psi)
(d) Left hand thread
(e) Notched nuts on connectors
(f) Safety devices:
 (i) Fusible plug or plugs in the neck that melts if the cylinder is exposed to 100°C temperature
 (ii) Vapour space in the neck to allow gravitational separation of acetylene and acetone before the acetylene enters the regulator
(g) Stored in a secure upright position
(h) Colourless gas
(i) Pungent smell (sweet, garlic)
(j) Lighter than air and rises – LPG heavier and settles
(k) Explosive in a wide range – 2.3% to 80% in air and 3% to 95% in O2
(l) Use only correct fittings that must contain <70% copper content
(m) Dischargerate must not exceed 1/7th of contents/hour
(n) ‘Empty’ cylinders may still present an explosion hazard
(o) Stored in a cool well-ventilated area

5.3.3.3 LPG Cylinders
(a) Cylinder colour – silver
(b) Left hand thread
(c) Notched nuts on connectors

(d) Safety devices – pressure relief valve incorporated in the valve body
(e) LPG is a colourless, odourless gas. In order to detect releases of LPG from equipment and storage cylinders it has been given a distinctive odour
(f) LPG is pressurised to 700 kPa at which pressure it forms a liquid. (0.7 MPa – 7 Bar ~ 100 psi)
(g) 1 litre of LPG liquid will form 250 litres of gas when vapourised
(h) Stored in a secure upright position
(i) Stored in a cool well-ventilated area
(j) Must be used in an upright position32
(k) ‘Empty’ cylinders may still present an explosion hazard
(l) Heavier than air and will tend to settle – Acetylene lighter than air and rises
(m) Narrower explosive range – 2% to 10% in air – 2% to 57% in O2
(n) No limit on hourly discharge rate. Cylinders may freeze up if draw-off rates are too high
(o) 100% usage
(p) LPG has a lower flame temperature than acetylene – O2 consumption is 4 times higher for LPG than for acetylene

5.3.3.4 Shielding Gas Cylinders
(a) Cylinder colour – depends on contents
(b) Filling pressure – 17,500 kPa @ 15°C, (17,500 kPa – 17.5 MPa – 175 Bar ~ 2,500 psi)
(c) Right hand thread
(d) Plain nuts on connectors
(e) Safety device – bursting disc in the neck
(f) Stored in a secure upright position
(g) Stored in a cool well-ventilated area. At 65°C a full cylinder can reach pressures of up to 26,000 kPa. At 28,000 kPa the disc (safety device) bursts
(h) Stored separately from flammable gases such as acetylene or LPG

5.3.4 Cylinder Storage, Transport, Handling and Use

5.3.4.1 Storage

All storage areas must comply with statutory requirements. Australian Standard AS 4332. The storage and handling of gases in cylinders gives complete requirements. LP Gas storage should additionally meet the requirements of AS/NZS 1596.

Cylinder storage areas should be well ventilated and away from sources of heat. External storage is preferred. Protection from weather is desirable but not at the expense of ventilation. Other products should not be stored with cylinders, especially oil, paints or corrosive liquids. Oxygen cylinders must be separated from fuel gas cylinders by a distance greater than 3 metres.
LPG cylinders should be stored in accordance with AS/NZS 1596. LPG cylinders in excess of 50 kg total capacity should not be stored within 3 metres of any other cylinders, including acetylene.

Cylinders should always be stored upright and restrained to prevent falling. Full cylinders should be segregated from empty ones and fuel gases from oxygen. “NO SMOKING OR NAKED LIGHTS” signs should be displayed where fuel gases are stored.

5.3.4.2 Transport – General

Take sensible precautions and ensure Australian Dangerous Goods Code (ADGC) and other regulatory requirements are met.

Use open vehicles wherever possible. If closed vans or cars have to be used make sure they are properly ventilated at all times. Ensure all valves are fully closed and that there are no leaks. Secure cylinders against movement within the vehicle. Do not allow any part of the cylinder to protrude from vehicle (this prohibits cylinders being carried horizontally across forklift tines). Disconnect all equipment (e.g. pressure regulators) from cylinders. Do not use or transport cylinders in a closed vehicle.

Acetylene and LPG cylinders must be transported upright. This ensures that the safety device is in contact with vapour and not liquid.

5.3.4.3 Transport – Low Headroom

Where it is impractical to transport cylinders safely in the upright position, such as into mines, they should only be laid down for the minimum time practicable and the cylinder must be protected against shock. When the cylinders are in position they must be immediately placed in the upright position. Acetylene cylinders must be left standing before use for sufficient time to allow the acetone to settle and the vapour space to reform at the neck of the cylinder. Acetylene cylinders should be left standing before use for the same period of time as they were laid down during transport. OEM data may indicate shorter times are suitable.

5.3.4.4 Handling

Do not move cylinders with the cylinder valves open.

Never lift a cylinder with magnets, chains or a sling. Use a cradle when lifting cylinders by crane. Never roll a cylinder along the ground. This damages the identification labels, and may cause the valve to open. Use a trolley for manual handling. The trolley should incorporate a heat shield because of the proximity of the fuel gas to the oxygen cylinder (See Figure 5.3).

5.3.4.5 Cylinder Use

The manufacturer’s instructions and recommendations should always be followed. Factors that warrant mention in addition to the safe procedures given in Table 5.4 are:

(a) Never open (“crack” or “sniff”) a fuel gas or oxygen cylinder valve. Uncontrolled release of fuel gases or oxygen can result in fires and explosion

(b) Damaged valves or regulators or those suspected to be damaged should not be used until checked by a competent organisation or person.

(c) Cylinders must never be used as rollers to assist moving other objects

(d) Acetylene and LPG cylinders must always be in the vertical or near vertical position when in use

(e) Acetylene can only be used to a maximum pressure of 150 kPa (gauge). With increasing pressure explosion may occur due to instability of this gas

(f) Opening of cylinder valves should only be carried out with approved keys or hand wheels. Do not use excessive force or extension key to open or close cylinder valves

Figure 5.3 Handling of Gas Cylinders (Images Courtesy BOC)
(g) Acetylene valves should not be opened more than about one and a half turns; one turn is preferable to allow for quick closing in an emergency

(h) Empty cylinders should have the valves closed, any protective caps fitted and be suitably identified, e.g. “MT” in chalk

(i) Always leave cylinders with the valve closed and slight positive pressure to ensure air does not enter

5.3.4.6 Connection to Regulators and Hoses

Keep the cylinder valve clean, especially its outlet connection. No grit, dirt, oil or dirty water should be present. Particles of dirt and residual moisture may be removed by blowing out by wiping with a clean dry cloth or blowing out with clean dry compressed air. The old practice of “cracking” open the valve momentarily and then closing it (also known as “snifiting”) has led to a number of incidents and is now a prohibited practice on many worksites.

Make sure the pressure regulator is suitable for the gas and pressure in the cylinder and that its inlet connection is the same thread as that in the cylinder valve. Fuel gas connections have left handed threads. Never force any connection that does not fit.

Open the cylinder valve slowly using its hand wheel or a suitable key for key-operated cylinder valves. Do not over tighten the spindle when shutting off the valve as this will destroy the soft seating material in the valve. If the valve spindle is too stiff to turn with the hand wheel or the correct key, do not increase the leverage on the spindle and return the cylinder to the gas supplier.

5.3.5 Piping and Manifolds

Where gas requirements exceed the delivery achievable from a single cylinder or an uninterrupted supply is required, or cylinder handling is to be avoided, manifolding of cylinders (Figure 5.5) and piping gas to the point of use is widely adopted.

AS 4289 Oxygen and acetylene gas reticulation systems applies to Oxygen-Acetylene systems and AS/NZS 1596 to LPG systems. Regulatory requirements may also apply.

Care is required in design, choice of materials, location of piping etc. as outlined below:

(a) Design of systems must only be carried out by qualified persons and in accordance with appropriate design rules and regulations. The gas supply organisation will generally be responsible for this

(b) Manifolds should be located in environments free of oil, grease and dust and should be compatible with the filling pressures of the cylinders to be connected, especially in the case of oxygen

(c) Components such as regulators, pressure gauges and connections should comply with AS 4267 Pressure regulators for use with industrial compressed gas cylinders and be of a satisfactory type for the gas type and operating pressure

(d) Materials must be of a suitable type, and have adequate resistance to the chemical action of the gas under operating conditions. Particular attention is drawn to the fact that alloys of a higher copper content (greater than 70% copper) cannot be used in applications involving acetylene due to the possibility of formation of explosive copper acetylide. Acetylene piping is usually of the seamless steel or stainless steel type

(e) Location should be chosen to avoid damage to piping and allow ease of repair (e.g. use ducting) and be remote or insulated from electrical cables

(f) Piping must be clearly labelled at inlet and outlet ends and along the length to identify the contents. Marking should be in accordance with AS 1345 Identification of the contents of pipes, conduits and ducts

(g) Piping must never be used as an earth for electrical equipment or as a work return path for welding due to the risk of explosion, fire or corrosion damage to the pipe

(h) Operating instructions must be available and safety-warning notices prominently displayed

(i) Installation must only be carried out by qualified persons experienced in the requirements for oxygen and fuel gas pipelines. Internal surfaces of piping and fittings must be free of foreign matter and the completed system should be fully tested prior to commissioning

(j) Outlet points for use with oxygen-fuel systems should comply with AS 4289 e.g. incorporate a shut-off valve and a flashback arrester as a minimum

(k) The requirements a) to i) above are also applicable to portable outlet headers

5.3.6 Portable and Mobile Cylinder Supply

Portable and mobile cylinders should be set up in accordance with the requirements of AS 4839 The safe use of portable and mobile oxy-fuel gas systems for welding, cutting, heating and allied processes.

Portable and mobile cylinder trolleys should be of a design that enables the cylinders to be returned to the upright position when in use.

5.3.6.1 Storage

The general provisions given under 5.3.4.1 Cylinder Storage apply equally for these applications except see 5.4.8 for cylinder trolleys.

5.4 Equipment Specifications and Assembly

5.4.1 General

All equipment and assemblies of equipment should be properly designed, manufactured, maintained and used with full consideration of the hazards inherent to the use of oxy-fuel gas mixtures detailed particularly in Sections 5.1, 5.2, 5.3 and 5.6. One way of achieving this is through the use of equipment complying with appropriate Standards (Australian, other National or International) where these exist.
5.4.2 Pressure Regulators and Gauges

Applications should never be supplied directly from compressed gas cylinders. A pressure regulator should be connected to the gas cylinder to control the pressure of the gas at the end application (generally a welding or cutting blowpipe) (See Figure 5.4). Regulators are usually fitted with two pressure gauges to allow monitoring of the cylinder contents and the delivery pressure to the end application. Australian Standards AS 4267 and AS 4840 Low pressure regulators for use in industrial compressed gas reticulation systems give requirements for regulators for each gas and cylinder filling or reticulation pressure.

Although accidents rarely occur as a direct result of regulator failure, care must be continuously exercised because the potential hazards are severe. This is particularly true of oxygen regulators where ignition and explosion is possible under adverse conditions (See Section 5.6.3). It must be noted that fill pressures for oxygen cylinders have increased over time, and older regulators may not be suitable for the newer cylinders due to hazard from ignition.

The following recommendations should be observed in order to ensure continued safe operations:

(a) Regulators should be used only with the gas and maximum cylinder pressure for which they are designed and labelled (See AS 4267 and AS 4840)
(b) The maximum outlet pressure of the regulator should never exceed the rated pressure of any downstream equipment
(c) Acetylene and LPG regulators should only be used with the gas for which they are designed. Use of an LPG regulator on acetylene cylinders could result in exceeding the maximum safe use pressure of acetylene
(d) Regulators having damaged pressure gauges or inlet and outlet connections etc should never be used. Inlet and outlet connections should never be changed from the original manufacturing specification

Recommended pressures for acetylene tips used in general fabrication and maintenance are typically in the range of 50 kPa (welding tips) to 100 kPa (majority of cutting, gouging and heating tips). There are exceptions to this generalisation where pressures lower than 50 kPa are recommended for certain tips but they are not commonly used in general fabrication. WTIA is not aware of any tips designed to operate at and acetylene pressure greater than 100 kPa.

An acetylene pressure regulator complying with AS 4267 is limited by a stop on the adjusting screw that prevents the regulator being set to a pressure higher than 150 kPa. Most tips found in maintenance workshops are designed to operate at an acetylene pressure of 100 kPa when flowing.

Acetylene at a pressure of 250 kPa or greater is prone to auto detonation (compression).

It is not practical or indeed safe to increase acetylene pressures higher than 150 kPa to compensate for pressure drops over long hose distances.

5.4.2.1 Static Increment

AS 4839 - 2001 Clause 7.3 specifies that the static increment or “gauge creep” shall not exceed 30% of the pressure indicated under operational flow conditions, (sometimes referred to as the dynamic pressure).

If we consider an acetylene regulator set to an operational flow (dynamic) pressure of 100 kPa. This means that during operation the regulator gauge would indicate a regulated pressure of 100 kPa with gas flowing. The static increment, or increase in indicated pressure, when the gas is turned off, should not rise above 130 kPa, an increase of 30 kPa, in this example.

5.4.2.2 Gauge Indication at Zero Pressure

Gauges on pressure regulators are covered by AS 1349 Bourdon tube pressure and vacuum gauges. Pressure regulators and their gauges can be easily damaged by incorrect...
start-up and shutdown procedures resulting in shock loading of the regulator seat and damaging the bourdon tube or mechanism of the gauge. A gauge that does not return to zero when the system is depressurised indicates damage.

Gauges that indicate a pressure other than zero (within 3% of maximum range) at atmospheric pressure do not comply with AS 1349.

5.4.3 Hoses and Fittings
5.4.3.1 Requirements
Hose and fittings for use in gas welding, cutting and allied processes should meet the requirements, including colour coding, specified in AS 1335 and the additional requirements of AS/NZS 1869 Hose and hose assemblies for liquefied petroleum gases (LP Gas), natural gas and town gas for LPG. For safety reasons the hose should present the minimum practicable flow restriction, i.e. be of the largest diameter and shortest length possible to minimise pressure drop and gas starvation at the tip or nozzle with potential of flashback.

5.4.3.2 Colour Coding
It should be noted that AS 1335 specifies different test methods and cover colours for acetylene hose (red) and LPG hose (orange). These hoses are constructed of different materials in accordance with the respective properties of acetylene and LPG and should never be interchanged. AS 1335 also specifies the colours for oxygen (blue) and air, nitrogen, carbon dioxide and argon (black) (See Table 5.1).

5.4.3.3 Location
Hoses should be located and protected from heat, mechanical damage, traffic, sparks, slag and oil so that accidental damage such as piercing or burning cannot occur. Location of hoses over sharp edges or manifolds or under sparks or hot slag from welding or cutting should be avoided.

5.4.3.4 Fittings
These must be as specified in AS 1335, with dimensions as specified in AS 4267, be of an appropriate type, with connections securely made and leak tight. Wire should never be used to fasten hose to fittings. Oxygen and shielding gas fittings have right hand threaded nuts, fuel gases left hand threaded nuts.

5.4.3.5 Length and Diameter
Hose should be of a diameter suitable for the flows required by the intended application. Hoses should be of the minimum practicable length to avoid excessive pressure drop, kinks, accidental damage etc.

It is recommended that the maximum hose length should not exceed fifteen (15) metres for each gas, or

NOTE: When adding on extension, header block A is removed from manifold and screwed into point B on extension.

(a) Examples of manifolding of cylinders

(b) Schematic example of manifolding of cylinders

Figure 5.5 Manifold of Cylinders

NOTES:
1. All leads should conform to EN ISO 14113 (Reference 54) as there is currently no applicable Australian standard
2. The fitting of oxygen manifold flashback arresters is common practice in Europe and advised, but not currently required, in Australia
3. Oxygen flexible leads must have a heat sink and anti-whip cable
4. Leads direct to cylinder packs should be 1800 mm or longer
such distance that will allow the operator of hand-held equipment to be in sight of all the supply gas cylinders, whichever is the smaller. Hoses should be single length, but where extended lengths are required, lengths of hose should only be joined using fittings that comply with AS 1335. If twin hose is not used, single oxygen and fuel gas hoses should be clipped together at about two metre intervals using special clips available from the hose supplier.

Standard internal diameters are 5.0, 6.3, 8.0, 10.0, 12.5, 16.0, 20.0 mm.

AS 4839 - 2001 specifies the maximum length of hose “shall” be 15 metres. The standard outlines two reasons for this:

I. To maintain the supply cylinders (this obviously includes pressure regulators and regulator end safety devices) within view of the operator.

II. Ensure flow rates at the tip are adequate to ensure the gas flow rate is matched to the flame velocity.

The second point is referred to in Clause 7.4 of AS 4839 - 2001. Insufficient gas flow or velocity in the tip is the prime reason for the flame to move back into the mixer of the blowpipe during a burnback or flashback. If flow velocity is too low the flame can “chase” the mixed gases back to the mixer. Maintaining a minimum velocity of the gas mixture as it leaves the tip is critical for stable operation and depends on the pressures of the fuel and oxygen set at the regulators, the length and diameter of the hoses and the cumulative flow restrictions in the system. Restrictions can develop in operation due to blocked or damaged tip orifices, accumulation of particles (build-up of soot) in safety devices, or kinked and pinched hoses.

If hoses longer than 15 metres are required in particular circumstances, additional safety precautions must be put in place, for example an observer assigned to monitor the source gas cylinders and hoses. Pressure losses can be overcome by increasing the hose diameter. A 10 mm diameter hose, for example, carries four times the volume and therefore has a much lower pressure drop per unit distance at a given flow rate than a standard 5 mm diameter hose.

Equipment manufacturers advice should be sought to ensure the correct high flow safety devices are matched to higher capacity hoses.

Where published data or advice cannot be obtained from the manufacturer or manufacturers of components used in a system, AS 4839 - 2001 requires the user to ensure that the “assembled system is safe to use and complies with this Standard.” Refer to AS 4839 - 2001 Clause 7.1.

Where it is necessary to use hose lengths greater than allowed by AS 4839 or OEM data, substitution of LPG for acetylene should be considered. LPG draw-off rates can be much higher than acetylene draw-off rates. There are no immediate safety concerns with use of high draw-off rates from LPG cylinders, however at very high rates the cylinders may “freeze”, limiting the available gas.

5.4.4 Blowpipes and Mixers

Blowpipes perform the gas control and mixing function with the aid of a gas mixer that may be integral to the blowpipe or a separate, compatible attachment. In any case, blowpipe and mixer must perform the mixing of oxygen and fuel gas with due consideration to potential back-flow of gases and flashback.

5.4.4.1 Requirements for Blowpipes

(a) The inlet connections should be suitable for the welding hose fittings (See 5.4.3.4)

(b) The control valves should be clearly marked ‘oxygen’ and ‘fuel’ (e.g. by the full names or by the abbreviations ‘O’ and ‘F’), and colour coded blue for oxygen and red for fuel

(c) Only suitable mixers and other attachments should be fitted to a blowpipe

(d) The blowpipe and mixers should be operated in accordance with the manufacturer’s instructions

(e) Particular attention should be paid to the recommended maximum and minimum operating pressures and flows for the blowpipe — mixer tip or nozzle combination. These should always be respected
5.4.5 Tips, Nozzles and their Attachment Fittings
(a) Tips and nozzles should be well identified and carry information relating to their use
(b) Tips and cutting nozzles appropriate to the particular fuel gas should be used. Sizes should be selected from the supplier’s operating data or WTIA Technical Note 5 Flame cutting of steel
(c) It should be noted that tips and nozzles operate safely and efficiently over a limited range of flows. Below a minimum flow the flame will recede into the tip or mixer with potential hazard of flashback. Manufacturer’s recommendations for correct operating pressures and flows should be followed
(d) Recommended operating pressures for tips and nozzles should take into account the pressure drop introduced by long lengths or small diameters of hoses and any added safety devices

5.4.6 Safety Devices

5.4.6.1 Requirements
It is recommended that safety devices should always be used in oxygen-fuel systems. Safety devices should comply with AS 4603 Flashback Arresters – Safety devices for use with fuel gases and oxygen or compressed air. WHS regulatory requirements must be followed at all times for a safe workplace. In Western Australia, the use of flashback arresters on both ends of the gas delivery hoses is currently mandated mandated.

As a minimum one non-return valve and flame arrester for each gas line should be used. Additional devices should be fitted where practicable. Optimum protection is provided when a flame arrester and a non-return valve for each gas is fitted at the blowpipe end, and a flame arrester, a non-return valve and a temperature activated cut-off valve for each line is fitted at the regulator end (See Figures 5.5 and 5.6). Pressure activated cut-off valves at the regulator end are optional.

Due consideration should be given to the pressure drop introduced by the safety devices, and it should be ensured that the total system is capable of supplying the required pressures and flows to the end application (tip or nozzle) as recommended by the manufacturer. If pressure drop is excessive, flame instability will result, and once this point is reached additional safety devices may reduce, rather than increase, the safety level due to the lower flow capacity. Higher flow flashback arresters should be fitted to minimise the pressure drop.

5.4.6.2 Non-return Valve
AS 4839 states that these devices should be used only if it is not otherwise possible to achieve the rated flows of the heat output device through the lack of outlet pressure from the pressure regulator.

A non-return valve is a device designed to prevent the passage of gas in the direction opposite to normal flow.

When fitted to the blowpipe end of the hose, as long as it is good condition, it reduces the possibility of oxygen and fuel gas mixing within one hose by preventing back flow of gases. Non-return valves do not respond quickly enough to stop a flashback reaching the hose, regulator, pipeline or cylinder. Only a correctly designed flashback arrester can stop flashbacks. It should be noted that all flashback arresters must have a non-return valve inside.

5.4.6.3 Flame Arrester
Flame arresters are devices that incorporate a dense sintered element to quench a flame front (flashback or decomposition).

5.4.6.4 Flashback Arrester
A flashback arrester is a safety device designed to stop a flashback and is for use on equipment where fuel gas and oxygen/compressed air are being used in combination. A flashback arrester is designed to prevent a flashback reaching the hoses, regulator, pipeline or cylinder. Flashback is the sustained retrogression or burning back of the flame into the upstream gas passages of the blowpipe, possibly including the hose, and with the risk of a subsequent explosion. If the flashback goes to the mixing chamber there is a squealing sound and a characteristic smoky flame. If the gases are not promptly turned off, it is likely that the bottom tube of the cutting attachment and the heating barrel will melt due to the flashback.

See Appendix G for a range of illustrations of flashback arresters in different modes.

Flashback arresters incorporate one or more of the following:
(a) Flame arrester – a device that quenches a flame front (flashback or decomposition). Depending on design, devices are effective in one or both directions
(b) Non-return valve – a device that prevents passage of gas in the direction opposite normal flow
(c) Temperature-sensitive cut-off valve – a device that closes preventing passage of gas when a predetermined temperature has been reached
(d) Excess flow cut-off valve – a device that closes in the event of flow exceeding a predetermined value
(e) Pressure-relief valve – a device, which automatically vents gas to the atmosphere when the pressure exceeds some, predetermined value and seals again when the pressure returns to within specified limits of that value
(f) Pressure-sensitive cut-off valve – a device that closes in the event of a backpressure wave from the downstream side of the cut-off valve

5.4.6.5 Fitment of Safety Devices
AS 4839 specifies safety devices shall be used in all oxy-fuel systems. As a minimum, one non-return valve and flashback arrester per gas line must be used with due consideration to the pressure drops experienced in all

35. The use of safety devices like non-return valves or flashback arresters does not reduce the need to follow correct and safe operating procedures (See Table 5.4).
components of the assembled system at the rated flow capacity of the tip or nozzle in use.36

AS 4839 specifies there shall be at least one safety device, e.g. a flashback arrester, to protect each line of oxygen and fuel gas. Flashback arresters shall comply with AS 4603. Additional devices shall be fitted whenever practicable. The minimum recommended configurations are listed below in order of preference. AS 4839 states that 1 and 2 below should be used only if it is not otherwise possible to achieve the rated flows of the heat output device through the lack of outlet pressure from the pressure regulator.

1. Flashback arresters at both hose ends (optimum protection). Optimum protection is provided when at the blowpipe end a flame arrester and a non-return valve for each gas line are fitted, and at the regulator end a flame arrester, a non-return valve and a temperature activated cut-off valve for each line is fitted. Pressure activated cut-off valves at the regulator end are optional. The options in 2 and 3 below provide lower levels of protection and should be used only when it is not otherwise possible to achieve the rated flows of the end heat output device through the lack of outlet pressure from the pressure regulator.

2. Flashback arresters at the blowpipe hose ends only. A flame arrester and a non-return valve shall be fitted to each blowpipe inlet connection.

3. Flashback arresters at the regulator hose ends and check valves at the blowpipe ends. At the blowpipe end, non-return valves shall be fitted on each gas line. At the regulator end, a flame arrester, non-return valve and a temperature activated cut-off valve shall be fitted to each gas line. A pressure activated cut-off valve may also be fitted at the regulator end of each gas line.

5.4.6.6 Flow Capacity and Operating Pressure

After the final assembly has been chosen, the user should verify the operating pressure and flow of each gas recommended by the manufacturer for the tip or nozzle in use. The user should ensure that all pressure drops through the whole of downstream equipment have been taken into account.

5.4.6.7 Maintenance of Safety Devices

Continued performance of safety devices is essential to safety performance. Safety devices should be included in any routine inspection and maintenance schedule and tested in accordance with manufacturers’ recommendations and requirements of relevant standards.

36 Fitment of safety devices resulting in reduced flow capacity below the minimum required by the end heat output device, and or, the mixer will result in flame instability with increased probability of flashback. Once this point is reached, additional safety devices may reduce, rather than increase, the safety level due to the reduced flow capacity. Flashback arresters with different flow capacities are available. For high flow applications (such as heating) the operator is to ensure higher flow flashback arresters are used.

Figure 5.8 Safety Relief Valve System with Integrated Flashback Arrester. (Oxygen flashback is currently optional but it is recommended)

5.4.7 Personal Protective Equipment (PPE)

Operators of oxy-fuel gas equipment should use appropriate personal protective equipment. Full details are given in Chapter 19.

5.4.8 Cylinder Trolleys

Cylinder trolleys should provide a suitable platform with secure non-flammable restraints for operation and transport. Trolleys should enable safe and stable transport of cylinders to the work location. A maximum of one each of oxygen and fuel should be used on a trolley. Acetylene cylinders must be upright at all times in operation. A heat shield between the cylinders is recommended.

Cylinders should be located on the trolley such that outlets are directed away from the other cylinder in the event of a possible release from a cylinder safety device to allow unimpeded release of gas. The maximum size of cylinder allowed by the design should be stated on a permanent label on the trolley.

5.4.9 System Assembly

5.4.9.1 General Compatibility

Any gas welding, cutting and allied processes application comprises many components, from gas cylinder or supply vessel to tip or nozzle. In the general case, many manufacturers and suppliers will provide these components separately. Even where one vendor supplies all the system components, the possible permutations are many. The user will decide the complete combination selected for any particular application; hence it is vital that not only the selected equipment complies individually with the specifications given above, but that the components are compatible with each other.

Significant factors to be considered and avoided include insufficient outlet pressure at the regulator outlet, especially in the case of acetylene, welding hose too small in diameter or too long and insufficient flow capacity due to the flow capacity of hoses and safety devices downstream.

Where a manufacturer provides this information in the form of a table indicating suitable combinations of regulator outlet pressure, appropriate lengths and diameters of hose and type and position of safety devices, only
those combinations should be used. An example of such a table is shown for guidance in Table 5.2.

Each size and type of tip (nozzle) has a recommended ideal operating pressure for both the oxygen and fuel gas, and these pressures should be marked on the tip.

Each size and type of tip also has a characteristic flow rate at the recommended pressure. Flow rate information is available from manufacturers' data.

A common mistake is to set up an oxy-acetylene system based on experience rather than equipment manufacturers' recommendations. This often puts the operating parameters way outside those recommended for safe use by the equipment manufacturers and exposes operators and other personnel to potentially hazardous situations.

Equipment manufacturers publish data on maximum recommended hose lengths for a given hose diameter, safety devices, tip type and tip size. Equipment must be matched for safe operation.

5.4.9.2 Fuel Gas

The choice of fuel gas uniquely determines several of the system operating parameters, especially equipment and operating pressures. Only equipment specified by the manufacturer for use with that particular fuel gas should be used.

Acetylene systems should not be used at flowing pressures exceeding 150 kPa downstream of the outlet of the pressure regulator (See AS 4267). LPG equipment, including especially regulators and hose, should never be used in Acetylene systems. It should be noted that Gas Suppliers recommend that the maximum acetylene gas draw-off rate should not exceed 1/7th of the cylinder contents per hour, which for the common large Acetylene cylinder (G Size) of 8.7 m³ dissolved gas capacity limits the maximum flow to 0.24 m³/hr, or 21 l/min. Systems requiring larger flows should be supplied from portable manifolds, manifold packs of cylinders, reticulated systems or in consultation with the Gas Suppliers.

Example 1: Determine the Maximum draw-off rate from a G size cylinder. See Note below.

Contents when full – 8.7 cubic metres (8.7 m³).

Maximum draw-off rate – 1/7th contents/hour

\[= \frac{8.7}{7} \text{ m}^3/\text{hour} = 1.24 \text{ m}^3/\text{hour}. \]

Convert m³/hour to litres/minute – 1 m³ = 1000 litres.

Convert hours to minutes – 1 hour = 60 minutes.

Therefore 1 m³/hour = 1.24 [1000/1 litres] / 1 [60/1 minutes]

= 20.7 litres/minute

Example 2: Determine the Maximum draw-off rate from a D size cylinder. See Note below.

Contents when full – 1.0 cubic metres (1.0 m³).

Maximum draw-off rate – 1/7th contents/hour

\[= \frac{1.0}{7} \text{ m}^3/\text{hour} = 0.14 \text{ m}^3/\text{hour}. \]

Convert m³/hour to litres/minute – 1 m³ = 1000 litres.

Convert hours to minutes – 1 hour = 60 minutes.

Therefore 1 m³/hour = 0.14 [1000/1 litres] / 1 [60/1 minutes]

= 2.38 litres/minute

Note: These figures are for short term usage only. For continuous flow, withdrawal rate may be only 1/15th of the cylinder content, and should be discussed with the gas supplier.

LPG systems should comprise only equipment especially designated for LPG except for multi-fuel gas components where the manufacturer specifically nominates LPG amongst the recommended fuels. LPG systems are not subject to maximum outlet pressure limitations except that at low temperatures the vapour pressure in the cylinders for some mixtures may prevent high system pressures. 400 kPa is a commonly used upper limit.

Hydrogen systems may operate at higher pressures than Acetylene and LPG and only equipment specially designated for Hydrogen should be used. Care must be taken in not exceeding the maximum rating of Hydrogen safety devices that may be in the range 400 to 600 kPa.

Natural Gas systems generally may use LPG equipment depending on the Natural Gas supply pressure. However it must be distinguished between reticulated Natural Gas, which may have a very low supply pressure unsuitable for some equipment, and cylinder-supplied Natural Gas, which has a much higher contents pressure that must be regulated down to common LPG supply pressures.

Note: The maximum continuous draw-off at 21°C for a 45 kg cylinder is 56.6 L/min. It is recommend that the draw-off rate of small cylinders is discussed with the gas supplier.

5.4.9.3 Flow Capacity

The tip or nozzle in use determines the required system pressures and flows and hence the pressure regulator outlet pressure settings. Particular care must be taken in allowing for pressure drops, especially through long lengths of small diameter hose and multiple safety devices. Manufacturer's instructions should be carefully followed. A system that has excessive pressure drops may become unstable resulting in possible retreat of the flame into the tip leading to overheating, backfire or flashback. Pressure drop

<table>
<thead>
<tr>
<th>Cylinder type and size</th>
<th>Tip model and size</th>
<th>Regulator model and outlet pressure</th>
<th>Regulator mounted safety device model</th>
<th>Hose min. diameter</th>
<th>Hose max. length</th>
<th>Blowpipe mounted safety device model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
is particularly important in acetylene systems because of the limitation in maximum operating pressure to only 150 kPa maximum.

5.5 Setting Up Plant Safely

5.5.1 Acetylene Draw-Off Rates

Exceeding the maximum recommended safe draw-off rate of the acetylene supply (one-seventh of the capacity of the cylinder or pack) is a common occurrence leading to solvent entrapment in the gas. Solvent entrapment damages regulators and release of dissolved gas from the solvent downstream of the regulator causes rapid fluctuations in gas pressure and flow, promoting flashbacks. A full G size cylinder contains 9,300 litres of acetylene dissolved in just 26 litres of acetone, therefore one volume of solvent drawn from a full cylinder has the potential to release up to 360 volumes of acetylene.

Equipment manufacturers publish data on flow rates but cylinder manufacturers label cylinders in total cubic metres contained and draw-off rates as 1/7th of contents per hour. For example a typical G size cylinder may contain 9,337 cubic metres of dissolved acetylene so the maximum draw-off rate is 1.33 cubic metres/hour. The maximum safe draw-off rate from a single G size cylinder with a capacity of 9.3 cubic metres of dissolved acetylene is in the order of 22 litres/minute.

In order to comply with AS 4839 – 2001, a tip with a recommended flow rate exceeding 21 litres/minute must be supplied with manifolded cylinders with a combined draw-off rate equal to or exceeding the tip flow rate.

An example of a component combination chart is given in Table 5.2.

For flow rate conversion factors see Appendix A.

5.5.2 Safe Equipment

Only equipment complying with the general specifications given in Section 5.4 and obtained from a reputable supplier should be used. Equipment should be used only for the purpose and with the gas for which it was designed.

5.5.2.1 Safety Devices

Gas equipment should never be used unless it has been set up with all the safety devices in place and in good order. This includes cylinders, cylinder valves, regulators, flashback arresters (regulator outlet and blowpipe inlet), and correct hose diameter and length for the attached device.

5.5.2.2 Cylinders

Cylinders should be placed in a purpose built trolley or secured against toppling and acetylene should be in an upright position.

5.5.3 Location of Cylinders

Wherever possible cylinders should be located in a well-ventilated area, well away from any sources of ignition.

Cylinders should not be taken on board ships or into any enclosed areas unless a complete risk assessment has been carried out and precautions implemented.

5.5.4 Rules and Instructions

All instructions for operation and maintenance, supplied by the manufacturers, must be available to all operators.

5.5.5 System Operation

Detailed procedures for setting up, using and closing down the typical oxy-fuel application are given in Table 5.4. Some of the more important steps are:

5.5.5.1 Leak testing

Prior to initial use of gas equipment, all breakable connections, glands and valves should be checked for leakages, e.g. by a pressure drop method (Table 5.4), or by means of a suitable non-flammable leak detecting fluid. Smell should not be relied upon as many persons have a poor sense of smell. Never test for leaks with a flame.

Leak testing should be carried out using a suitable non-flammable liquid that forms visible bubbles at the leak site.

5.5.5.2 Purging

It is strongly recommended to purge oxygen and fuel gas hoses prior to usage at the start of the day and after the blowpipe has been shut down for a substantial period of time such as lunch periods or overnight. This must not be done in confined spaces or in the presence of any ignition source (See Table 5.4). Always refer to operating instructions for the correct purging procedures.

5.5.5.3 Lighting

Flint lighters or stationary pilot flames should be used for ignition of flames. Blowpipes must not be lit or re-lit by hot metal, matches, hot electrodes or welding arc. When lighting, ensure that the flame cannot touch either nearby personnel or any combustible material (See Table 5.4). Always refer to operating instructions for the correct lighting procedures.

5.5.5.4 Work Interruption

When blowpipes are not in use, the oxygen and fuel gas should be closed off at the supply and hoses blown down to prevent possible leakage and gauge failure. Blowpipes and hoses should be safely placed so accidents or damage cannot occur.

37. G-Size cylinders are typically filled to 7.0 m³, 8.7 m³ or 9.3 m³
38. Note: There is a risk of fire or explosion with some hydrocarbon based detergents that may be used to make up test media.
5.5.6 Equipment Inspection and Maintenance

5.5.6.1 Inspection
Inspection should be carried out on a routine basis for all items of equipment considered in Sections 5.3 and 5.4. Guidance on inspection and maintenance for the equipment described in Section 5.4 is given in Table 5.5.

5.5.6.2 Maintenance
Maintenance operations should be carried out according to manufacturer’s instructions and the suggested guidance on inspection and maintenance intervals in Table 5.5. It is advisable to arrange for servicing of equipment by either the manufacturer or its accredited repairers or by organisations that specialise in maintenance of such equipment. Larger workshops may support a maintenance group capable of carrying out this work.

5.5.6.3 Detailed Inspection and Maintenance
Some useful guidance on inspection and maintenance for specific equipment follows:
(a) Checks for gas leakage should be carried out on all regulators, valves and cylinders regularly and at least each time the equipment is set up
(b) Repair and maintenance of regulators must only be carried out by approved persons or organisation, e.g. repairers accredited by manufacturers or suppliers
(c) If a regulator shows excessive delivery pressure “creep”\(^{39}\), it should be replaced immediately and the defective regulator repaired
(d) If pressure gauges or indicators do not return to the stop when pressure is released, replacement and repair is required
(e) Checks of regulator pressure indicator accuracy should be carried out at least annually
(f) Damaged hoses should be discarded and not repaired. Rubber hose should never be repaired with adhesive tape. When flashback has occurred all hoses should be discarded as internal damage has probably resulted (See 5.6.1)

5.5.7 Flame Cutting and Ancillary Equipment
A wide range of mechanised equipment and aids to hand flame cutting are available and often used. Malfunction can result in damage that could eventually lead to injury or damage to other equipment. Basic procedures that should be adopted include the following:

(a) Maintenance – adopt a regular inspection and maintenance programme for all mechanical or electrical equipment
(b) Frequency – the frequency of the above will depend largely on the complexity of the equipment and extent of usage
(c) Location – equipment should be located in the safest and cleanest possible environment
(d) Work table – supports should be carefully designed so as to minimise risks to personnel

\(^{39}\) To check for “creep” (pressure build-up when the blowpipe valves are closed), close the welding or cutting blowpipe valves whilst the regulator is open and check for continuing increase in pressure beyond the pressure that has been set. Refer to manufacturer’s operating manual for the acceptable figure.
5.6 Emergencies and Incidents

5.6.1 Backfires and Flashback

Instability of the flame in a tip or nozzle is a common cause of emergencies and incidents in Oxygen-fuel gas systems. These emergencies can occur during lighting up or during operation.

Incorrect lighting up procedures (especially neglecting to purge hoses – see Table 5.4), low operating pressures at the tip or nozzle resulting from inadequate gas supply, damaged or poorly maintained equipment or a combination of all these are usually the cause.

The problems show up as:

(a) Backfire – the return of the flame into the blowpipe with a popping sound, the flame being either extinguished or re-ignited at the nozzle

(b) Sustained backfire - the return of the flame into the blowpipe with continued burning within the neck or handpiece. This is accompanied by an initial popping sound followed by a hissing sound from the continued burning within the blowpipe. In this case, immediately turn off gases at the blowpipe, oxygen first, and check nozzle or tip condition, gas pressure and connections to torch and cylinder

(c) Flashback - the return of fire through the blowpipe into the hoses and even the regulators. Depending on its severity, it may also reach the acetylene cylinder, causing heating and decomposition of the contents

If any of these events occurs, especially flashback, immediately close the oxygen blowpipe valve followed by the fuel gas blowpipe valve. Close cylinder valves and if cylinders heat up, cool as described in 5.5.4 and 5.5.5.

Check operating conditions and equipment faults before restarting. Discard any gas hose when flashback into the hose has occurred.

5.6.2 Gas Leaks

Leaking gas is a potential hazard wherever it occurs and whichever the gas. Fuel gases present the greatest hazard since all commonly used fuels can ignite even when in low concentrations in air and require minimum energy to do so, i.e. any spark or source of high temperature is sufficient to start a fire or an explosion.

Oxygen makes all materials more readily combustible and will increase the intensity and severity of any fire.

Inert gases displace oxygen and can cause unnoticed loss of alertness and then asphyxiation.

The sources of gas leaks include:

(a) Cylinder fittings (valves, safety devices) damaged or in poor condition (See below 5.6.5 for leaking acetylene cylinders)

(b) Valves not closed off when equipment is not in use

(c) Breakable connections improperly made up or in poor condition (scored or dirty nipples, conical seatings, O-rings). The typical oxygen-fuel gas plant has many connections points in the cylinder valves, regulators, hoses, blowpipe and tips and nozzles. Each of these is a potential leak point if not in good condition

(d) Hoses in poor condition. Whenever a gas leak is suspected or detected, operations should cease, the leak rectified immediately if possible, heat sources removed or switched off and the area cleared until gas has dispersed

5.6.3 Ignition of Oxygen Regulators, Hoses and other High Pressure Equipment

Although accidents of this type are rare, when they do occur the results may include serious injury, a major fire or even fatality. Care in use and maintenance of oxygen regulators and other equipment is therefore extremely important.

Ignition may occur due to:

(a) Spontaneous ignition of oil, grease or hydrocarbon liquids in high-pressure oxygen. Keep oil and grease away from regulators and other equipment, do not use oil or grease as a lubricant for tight threads etc. and do not use oily rags, tools or operate with oily hands (See Section 5.2.2)

(b) Use of equipment (e.g. pressure regulators, manifolds, high pressure hoses) not clearly designated as suitable for high pressure oxygen and rated for the same pressure as the cylinders in use. Use only equipment clearly marked for oxygen, of a suitable pressure rating, clean and in good operation condition

(c) Particles entrained in high-velocity gas streams (e.g. piping, valve connections) causing ignition in cylinder valve or regulator seats and seals. Cleanliness and generally good housekeeping practice are required. Always clean seats of cylinder valves (See Table 5.4 and AS 4839) before fitting equipment. The old practice “snifting” or “cracking” the cylinder valve has led to many incidents and is not allowed on many worksites

(d) Rapid opening of the oxygen cylinder valve causing a high temperature at the regulator seat and seals. The cylinder valve must be opened slowly.

5.6.4 Cylinders in Fires

The most common incidents are those involving ignitions of fuel leakages from regulator and hose connections near the cylinder. If this occurs, as appropriate, either the cylinder valve should be closed or the pressure regulator adjusting screw released, using a gloved hand, and the fire extinguished as soon as possible. Otherwise, use of a dry powder or CO₂ fire extinguisher should be followed by closing of the cylinder valve to prevent re-ignition.

If it is not possible to extinguish quickly fires of any type with a fire extinguisher, further attempts should not be made and:

(a) The area should be evacuated (100 metres minimum)

(b) The fire brigade should be called
(c) If attempts are made to fight the fire, they should be done only from a protected position and using copious quantities of water.

(d) Cylinders not involved in the fire and that have not become heated should be moved away as quickly as possible, provided this can be done without risk. Cylinder valves should be closed. Cylinders that have been heated can explode even after the fire has been extinguished, particularly acetylene cylinders.

(e) When the fire brigade arrives, they should be notified of the location and number of cylinders involved in the fire, and the name of the gases they contain.

(f) Inform the gas supplier as soon as possible.

(g) If the cylinder contents are unknown, the actions taken should be those for acetylene cylinders (See below 5.6.5)

Table 5.4 Safe Procedures For Setting Up and Closing Down Gas Welding, Heating and Cutting Equipment Based on AS 4839 - 2001

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 SETTING UP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Equipment connection</td>
<td>1. Check that all equipment, equipment connections and especially both valve outlets and regulator inlets are clean and free from oil and grease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Remove the protective cover and check the cylinder valve outlet. Clean with a dry cloth if necessary. Do not “Crack” (briefly open and close) the cylinder valves. This practice has led to many incidents and is a prohibited practice on many sites.</td>
<td>This is to remove any contaminants from the valve outlet. Always ensure outlets are clean and dry.</td>
</tr>
<tr>
<td></td>
<td>3. Screw regulators into cylinder valves, using an appropriate spanner where applicable. Make sure the regulators adjusting knobs are fully released.</td>
<td>Some regulators only require hand tightening through a hand wheel. Note that all oxygen connections have right hand nuts and fuel gas connections have left hand nuts.</td>
</tr>
<tr>
<td></td>
<td>4. Fit hoses to the regulator outlets, using an appropriate spanner, including the regulator flashback arresters. Do not over tighten connections.</td>
<td>All components should be identified by marking according to the appropriate standard. Regulators and hoses should be colour coded blue for oxygen, red for acetylene and orange for LPG. Safety devices are blue for oxygen and red for fuel gases.</td>
</tr>
<tr>
<td></td>
<td>5. Slowly open the oxygen cylinder valve, then the acetylene cylinder valve.</td>
<td>Open slowly enough to observe the rise in the cylinder pressure gauge on the regulator. Sudden opening of the cylinder valve can cause damage to the regulator seat and lead to fire and explosion on an oxygen regulator.</td>
</tr>
<tr>
<td></td>
<td>6. Adjust the oxygen regulator to allow a small flow through the hose and then release the control knob fully. Repeat for the fuel gas regulator.</td>
<td>This blows off dust and chalk from the hoses. This operation should be done especially for new hoses.</td>
</tr>
<tr>
<td></td>
<td>7. Connect the blowpipe to the other hose ends, including flashback arresters.</td>
<td>Flashback arresters at the blowpipe end should always be used. Blowpipe inlet connections and control valves should be marked O for oxygen, F for fuel gas.</td>
</tr>
<tr>
<td></td>
<td>8. Connect any required attachments, tips or nozzles to the blowpipe.</td>
<td>Ensure blowpipe, attachment and tips and nozzles are compatible.</td>
</tr>
</tbody>
</table>

5.6.5 Acetylene Cylinder Overheating

Acetylene cylinders may become hot either through flash-back or due to accidental heating (e.g. contact with hot objects, fires). To prevent serious accidents, the following procedure should be carried out immediately overheating is noted:

(a) Shut cylinder valve quickly and have the supplier notified as soon as practicable. If the cylinder is on fire, call the fire brigade.

(b) Clear all personnel from the area.

(c) Cool the cylinder with a plentiful supply of water, preferably from a fire hydrant and with the person behind a suitable protective barrier.

(d) If the cylinder safety device functions and issuing gas ignites, cool as above, but do not extinguish the flames. Where gas does not ignite, all sources of ignition must be removed from the area if this can be done safely.
Table 5.4 Safe Procedures For Setting Up and Closing Down Gas Welding, Heating and Cutting Equipment (cont.)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 Pressure setting and leak test</td>
<td>1. Check that the blowpipe valves are closed and adjust the oxygen regulator to the required pressure.</td>
<td>Set the pressure recommended by the manufacturer of the equipment.</td>
</tr>
<tr>
<td></td>
<td>2. Close the oxygen cylinder valve and check for pressure drop on the regulator gauges.</td>
<td>Any drop indicates a leak between the cylinder valve (including gland) and the blowpipe valve. Leaks through the blowpipe valve will show at tip or nozzle.</td>
</tr>
<tr>
<td></td>
<td>3. Check also for leaks at the top of the cylinder, particularly at the safety device, gland nut and regulator inlet and outlet connections using a solution of leak detecting fluid like Teepol HB7.</td>
<td>These will not show as a pressure drop. Any leak on the cylinder and its fittings must be referred to the gas supplier.</td>
</tr>
<tr>
<td></td>
<td>4. Once all leaks have been corrected, re-open cylinder valve slowly.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Repeat the procedure (1.2.1 – 1.2.4 for the fuel gas.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. If the valve is not hand wheel operated, leave the cylinder key in the fuel gas cylinder valve.</td>
<td>This will allow quick shut-down in an emergency.</td>
</tr>
<tr>
<td>2 USE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Purge</td>
<td>1. Open, then close, each blowpipe valve in turn for 2 seconds for every 5 metres of hose.</td>
<td>Make certain that no source of ignition is nearby. Purging will eliminate mixed gases in hose – a cause of flashback at lighting up.</td>
</tr>
<tr>
<td></td>
<td>2. Light the gas at the tip or nozzle using only a spark lighter or a pilot flame.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Increase the fuel gas flow until the flame no longer produces soot.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Open the blowpipe oxygen valve and adjust the flame to that required by the process.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Check the regulator set pressures and readjust if necessary.</td>
<td></td>
</tr>
<tr>
<td>2.3 Shutting off blowpipe</td>
<td>1. Close blowpipe fuel gas valve.</td>
<td>This cuts off fuel supply to the flame.</td>
</tr>
<tr>
<td></td>
<td>2. Close blowpipe oxygen valve.</td>
<td>This procedure is satisfactory for temporary halts not involving leaving the equipment unattended.</td>
</tr>
<tr>
<td></td>
<td>3. IN CASE OF SUSTAINED BACKFIRE, CLOSE IMMEDIATELY BLOWPIPE OXYGEN VALVE FIRST</td>
<td>This cuts off oxygen supply to the internal flame and should extinguish it immediately.</td>
</tr>
<tr>
<td>3 CLOSING DOWN</td>
<td>1. Shut off blowpipe as in 2.3 above.</td>
<td>This procedure should be performed whenever the equipment is left unattended or whenever cylinders are being changed.</td>
</tr>
<tr>
<td></td>
<td>2. Close both cylinder valves.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Open the blowpipe oxygen valve to allow the gas to drain out.</td>
<td>This will release all pressure in the regulator, hose and blowpipe.</td>
</tr>
<tr>
<td></td>
<td>4. Unscrew the oxygen regulator control knob once the contents pressure gauge reads zero.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Repeat the procedure (3.1 – 3.4) for the fuel gas valve and regulator.</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.5 Guidance on Equipment Maintenance Based on AS 4839

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>MAINTENANCE</th>
<th>AS NOMINATED (Note 2)</th>
<th>REFURBISHMENT OR REPLACEMENT INTERVALS (Note 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. REGULATORS (including their integral protective devices)</td>
<td>WEEKLY (Note 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual examination to determine suitability for service (e.g. gas, pressure rating, damage), condition of threads and sealing surfaces, oil or grease contamination. Leaking test all joints at working pressure.</td>
<td>Six monthly: Functional tests to ensure the correct operation of internal components.</td>
<td>Manufacturer or supplier recommendation, but not exceeding 5 years.</td>
<td></td>
</tr>
<tr>
<td>2. FLASHBACK ARRESTERS and other external devices (including non-return valves)</td>
<td>Visual examination to determine suitability for service (e.g. gas, pressure rating, damage), condition of threads and sealing surfaces, oil or grease contamination. Leaking test all joints at working pressure.</td>
<td>Yearly as detailed in AS 4603 or following a flashback: Proper functioning of the non-return valves and flashback arresters. For pressure-activated valves, check there is no flow in the normal direction with the valve tripped.</td>
<td>Manufacturer or supplier recommendation, but not exceeding 5 years.</td>
</tr>
<tr>
<td>3. HOSE ASSEMBLIES</td>
<td>Visual examination to determine suitability for service (e.g. gas, pressure rating, damage), condition of cover, threads and sealing surfaces of the end fittings. Leaking test all joints at working pressure.</td>
<td>Six monthly: Check for absence of cuts and excessive wear by bending the hose in a tight radius, to ensure reinforcement is not visible.</td>
<td>Determined by the hose assembly condition.</td>
</tr>
<tr>
<td>4. BLOWPIPES, MIXERS AND ATTACHMENTS</td>
<td>Visual examination for damage of the threads and sealing surfaces of the hose connections and the attachment connections. Leaking test all joints at working pressure.</td>
<td>Six monthly: Test control valve function. Blank the attachment connection and leak test for internal malfunction.</td>
<td>Manufacturer or supplier recommendation, but not exceeding 5 years (Note 4).</td>
</tr>
</tbody>
</table>

NOTES:
1. If in constant use or BEFORE EVERY USE (to be performed by the operator according to manufacturer’s instructions
2. To be carried out by a technically competent person
3. Equipment condition determines whether refurbishment or replacement is required
4. Regulator elastomers and seals will wear and deteriorate in service or on the shelf. Items stored for 1 year or over without use, should receive inspection as per the annual maintenance inspection

(e) Continue cooling but with stops at intervals to check if the cooling water dries off the cylinder or if it remains wet
(f) When the cylinder remains wet on removal of the water, the cylinder should be removed to an open space away from any ignition source and placed under water e.g., in a 200-litre drum
(g) Continue cooling for 24 hours or as advised by a competent authority

5.6.6 Oxygen Cylinder Explosions

Accidents have been reported that involve explosion of an oxygen cylinder due to direct flame impingement from an adjacent acetylene cylinder. Such accidents arise when the fusible plugs melt due to cylinder overheating, the escaping gas ignites and the flame impinges on the oxygen cylinder. This causes softening, bulging and bursting of this cylinder without appreciable increase in its internal pressure, i.e. without causing the bursting disc to rupture (Reference 5).

Where oxygen and acetylene cylinders in use are adjacent to each other, consideration should be given to protecting the oxygen cylinder by placing a non-flammable shield, e.g. a 2-3 mm sheet of steel or refractory fibre between the cylinders. The shield should extend at least from the shoulder of the acetylene cylinder to the top of the oxygen cylinder regulator.
6.1 Introduction

Plasma arc processes have found relatively widespread applications in cutting, metal spraying (Chapter 11) and welding operations. A number of features of the process warrant treatment of health and safety aspects of the process separately from the conventional arc and gas welding and cutting processes. In recent times, cutting equipment has become relatively inexpensive and it is economic because it only requires compressed air for the plasma gas. These features have made the process popular in many small workshops (See also AS 60974.1).

6.2 Process Features

The two main plasma systems used in welding and cutting operations are:

(a) Transferred arc systems – plasma is transferred from torch to workpiece (Figure 6.1(a))

(b) Non-transferred arc systems – the arc is struck between cathode and anode within the torch and plasma only issues from the torch (Figure 6.1(b)). Variants on these systems are based on external use of water

(c) Water-shroud attachments – the plasma jet and shielding gas are surrounded by a concentric, tubular...
curtain of water that reduces noise and radiation. A dye may be used in the water to further reduce radiation to safe levels (See Section 6.6.1 and Figure 6.1(c))

(d) Water tables – the work to be plasma cut is supported horizontally in a tank with the water level set at half the thickness of the plate or slightly above the upper surface of the plate, depending on the material being cut. Apart from technological advantages in the cleanliness of the cut, this procedure reduces noise and eliminates fume from the process (See Section 6.6.2 and Figure 6.1(d))

(e) Underwater plasma – a water table is used and the water level is set 50 mm above the plate surface. This eliminates the need for a water-shroud attachment (See Figure 6.1(e)). When cutting on a water table there is potential for pockets of hydrogen to form under the cutting table. This hydrogen formed by water dissociation from the high voltage and temperature of the plasma can increase in volume and be detonated by the heat generated. The risk can be reduced by stirring the water under the table to avoid pockets of gas forming at the plate/water interface

(f) Water injection plasma – a radial flow of water, directed at the plasma, constricts the arc and cools the workpiece. The noise emission is comparable with a dry plasma gun while the fume and radiations are less, but not as low as from a water-shroud attachment (See Figure 6.1(f))

(g) Gas shielding – the units are designed to run on a range of shielding gases, i.e. Argon, Nitrogen, Air and Oxygen. Hydrogen is also mixed with Argon and Nitrogen to improve performance

<table>
<thead>
<tr>
<th>Plate Thickness mm</th>
<th>Cutting Power kW (Note 1)</th>
<th>Overall Noise – dB (2 m from torch) (Note 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>55</td>
<td>98</td>
</tr>
<tr>
<td>25</td>
<td>55</td>
<td>104</td>
</tr>
<tr>
<td>51</td>
<td>110</td>
<td>103-106</td>
</tr>
<tr>
<td>102</td>
<td>165</td>
<td>108-111</td>
</tr>
<tr>
<td>180</td>
<td>220</td>
<td>112</td>
</tr>
</tbody>
</table>

Table 6.1 Typical Noise Level During Plasma Cutting of Stainless Steel (Reference 8)

NOTES:
1. Plasma gas not specified
2. Noise reductions relative to a “dry” gun are generally achievable as follows (Reference 9):
 (a) Water shroud without water table or without water contacting lower surface of plate -6dB
 (b) Water shroud and water table, water in contact with plate -10dB
 (c) Underwater cutting (40-50 mm water over plate) -30dB

The main hazards are:
(a) Electric shock – operating voltages can be in excess of 700 V (See Chapter 14)
(b) Noxious gases – generation of ozone, nitrogen dioxide and decomposition of certain degreasing agents can occur
(c) Fume – high levels of fume may result from oxidation of the workpiece (Reference 6) or decomposition of a coating on it
(d) Noise – noise levels usually exceed those generated by other cutting and welding processes
(e) Radiation – intense visible, infrared and ultraviolet radiations are emitted (comparable to TIG welding at high current levels) (See Chapter 15)

6.3 Electric Shock

Open circuit voltages of up to 700V are possible and high frequency current at high voltage is used to initiate the arc. Torch design is such that operators cannot simultaneously touch both electrodes. Additionally, protective devices and warning signs are attached to all possible areas of contact. Although the risks involved in operation of plasma equipment are minimised by design and manufacture standards, the following basic precautions are essential:
(a) Educate operators in respect of hazards to minimise the possibility of unauthorised tampering or foolish practice
(b) Do not operate dry plasma equipment in damp or wet environments unless specifically designed to do so safely, i.e. without causing electrical shock (See Section 14)
(c) Regularly maintain and inspect equipment to ensure that hazardous situations do not exist
(d) Torches and electrodes are generally water-cooled. Care should be exercised to ensure that excessively hard water is not used as this could lead to scaling and blocking of waterways and burning out of the torch

The conductivity of the water is also important because it could cause an electrical leak to earth. Plasma torch manufacturers require that the electrical resistivity of the cooling water exceed 0.1 M Ohms/cm

6.4 Noise

Noise levels during plasma cutting can cause hearing loss both for the operator and nearby personnel. Table 6.1 gives an indication of the noise levels attainable in plasma cutting. It should be noted that noise level increases with the thickness of the material being cut and is generally higher in gas mixtures containing nitrogen than in argon hydrogen mixtures (Reference 7).

Operators and all personnel in the vicinity of the plasma torch should be provided with adequate hearing protection (Chapter 18). AS/NZS 1269 Occupational noise management prescribes a suitable hearing conservation programme.
6.5 Arc Radiation (Non-ionising)

The level of arc radiation (visible, ultraviolet and infrared) emitted in dry plasma cutting and welding is similar to that given off by high current GTAW (TIG) welding. To avoid damage to skin or eyes, the provisions given in Chapter 15 and Chapter 19 should be adhered to.

6.6 Noxious Gases

6.6.1 Production of Gases

As with other high power gas shielded arc processes, potential dangers arise from the formation of toxic gases by the effect of ultraviolet radiation on the ambient atmosphere. The main gases to be considered are:

(a) Ozone is produced by the action of ultraviolet radiation on oxygen in the air

(b) Oxides of Nitrogen are produced by the combination of nitrogen and oxygen in the presence of ultraviolet radiation

(c) Phosgene and other gases arising from solvents. Ultraviolet radiation and heat will cause a breakdown of chlorinated hydrocarbon solvents such as perchlorethylene and trichlorethylene that are sometimes used as degreasing agents

6.6.2 Recommendations

The following recommendations are based on References 7 and 8:

(a) Local exhaust ventilation should be provided except where for cutting using water tables or underwater plasma. When cutting or welding in confined spaces appropriate ventilation and protection is required (Chapter 17)

(b) When using degreasing agents guard against the formation of toxic phosgene. The recommendations of Section 10.3 should be observed. This will prevent chlorinated hydrocarbons reaching the weld zone

6.7 Fume

The amount of fume (and noxious gas – see Section 6.6.1) given off during plasma cutting or welding is, as with other processes, largely dependent upon current and material thickness, and in general is similar to that encountered in high current GMAW (MIG/MAG) welding.

The type (constituents) of fume depends mainly on the material being cut or welded with oxides of nitrogen being significant in the gaseous components. Particular ventilation requirements are similar to those that apply to other welding processes (See Chapter 17).

In cutting processes most of the fume is given off underneath the material being cut and it is preferable to provide fume extraction from underneath the workpiece (Section 17.6).

Use of a water table (Figures 6.1 (d) & (e)) in plasma cutting traps fume (Reference 9) and is recommended for automated installations. Cutting of aluminium in a water bath may however generate hydrogen bubbles under the workpiece which can cause explosions. To avoid this, the water should be circulated and maintained in a clean condition (Reference 50).

6.8 Dusts

See fire and explosion hazards of dusts in Sections 11.4 and 16.3.
RESISTANCE WELDING

7.1 Introduction
Resistance welding processes have widespread industrial usage in high production operations involving sheet metals, in the automotive industry and fabrication of domestic appliances, rail carriages, aircraft etc. These processes include projection, spot, seam and flash welding in a wide range of welding power source types.

The main hazards that may arise with these processes are:
(a) Electric shock due to contact with live primary terminals or uninsulated parts
(b) Ejection of small particles of molten metal during the welding
(c) Crushing of some part of the body between electrodes and other parts in power operated welding power sources, both on closing and opening strokes
(d) Toxic fumes and gases as a result of welding coated or contaminated materials (See Chapter 17). For fixed equipment strategically placed fume extraction can minimise the effects

7.2 Manufacture and Installation of Resistance Welding Equipment

7.2.1 Electrical Safety
Resistance welding equipment is designed and manufactured to avoid accidental contact with parts of the system that are electrically hazardous. All electrical equipment including control panels must be manufactured and installed in accordance with the safety requirements of electricity authorities and appropriate national Standards. High voltage parts must be suitably insulated and protected by complete enclosures with access doors and panels interlocked to electrically isolate the welding power source. Doors and access panels and other live electrical equipment accessible at production floor level must be kept locked or interlocked to prevent access by unauthorised persons to live portions of the equipment (See AS 2799 Resistance welding equipment – Single-phase a.c. transformer type).
All electrical equipment must be suitably earthed and the transformer secondary may be earthed or provided with equivalent protection. External weld-initiating control circuits must operate at low voltage and not over 32 V for portable equipment.

7.2.2 Mechanical Safety
Resistance welding equipment should be designed to avoid crushing of hands and other parts of the body. This may be achieved by:
(a) Arranging initiating controls such as push buttons and foot switches etc. to prevent the operator from inadvertently operating them
(b) Guarding the operator of multi-gun welding machines or large platen type machines where fingers may pass under the point of operation, by the use of two hand controls, barriers, electronic eye safety circuits or similar devices to those required for punch presses
(c) Providing one or more emergency buttons for each operator of multi-gun welding power sources.
(d) Designing the moving holder or portable resistance welding power sources so that the fingers placed on the operating handles cannot be crushed, e.g. by suitably remote two-hand controls

7.3 Location of Equipment
Care must be taken in choosing a safe location for resistance welding equipment to minimise risks to nearby personnel, equipment and materials. This is particularly so for flash welding where a large number of hot or molten particles are ejected for considerable distances during welding. These can cause fire, eye injuries or superficial burns. Guards or screens on fixed flash welding equipment reduce the ejection distance of the ejected molten particles. Some close shielding may be possible with portable/mobile equipment.

There is also high level of visible radiation associated with flash welding. Guards or screens may be necessary adjacent to flash welding equipment.

7.4 Personal Protective Equipment
As with other welding operations, the personal protective equipment required is dependent upon the particular
application. Chapter 19 gives details of various items of safety equipment, and the following indicates equipment needed for resistance welding:

(a) Eye protection in the form of eye or face shield or hardened lens goggles is recommended. Face shields are preferred. For flash welding, goggles that incorporate a number 2 or 3 filter shade are recommended to minimise discomfort due to visible radiation (See Chapter 19)

(b) Skin protection should be provided by the wearing of non-flammable clothing with the minimum number of pockets and cuffs in which hot or molten particles can lodge and leather gloves. For flash welding, increased protection by the use of flame resistant aprons, spats, gauntlets, cap etc. is advisable

(c) Protective footwear is advisable

(d) Respiratory protection may be required (See Section 19.6)

(e) Appropriate measures should be taken to protect adjacent workers near the equipment whilst in use. This may be achieved by screening of the equipment with suitable guards
8.1 Aluminothermic Welding

8.1.1 Aluminothermic Process

The basis of this welding process is the chemical reaction between powdered forms of aluminium and iron oxide. An ignition powder, usually aluminium powder with a peroxide, chromate or chloride is ignited to initiate a reaction between the components of the aluminothermic mix. This results in the liberation of intense heat and forms steel at a temperature in the order of 2500°C. Alloying elements such as manganese, carbon, chromium and others can be added in the proportions required to the aluminothermic mix. Figure 8.1 illustrates the essential components and principles of aluminothermic welding.

The process is most often used on high carbon rail steels that are inherently difficult to weld, even when high preheat temperatures are used. Preheating with flames is also required to dry any moisture from the components used and to assist in preventing chilling of the molten metal when it contacts the surfaces to be welded.

8.1.2 Applications

The aluminothermic process finds its major application in welding of rail steels and is mostly employed in field welding operations. It is also, however, used in workshop situations for a variety of applications, examples being repair of large broken steel castings and welding of complex shapes for which moulds can be prepared.

8.1.3 Precautions

(a) Moisture – the presence of moisture either in the aluminothermic mix, within the moulds or crucible or on components to be welded can lead to rapid formation of steam and ejection of molten metal during the process. Hence:

(i) Follow the recommended preheating procedures

(ii) Do not use aluminothermic portions that have become moist

(iii) Do not use the process in wet weather or workplaces that are wet unless steps can be taken to prevent any moisture from entering the system either before, during or within about thirty minutes after welding

(b) Welding site – the process generally results in ejection of many small molten and hot particles in the vicinity of the operation. These constitute a hazard to personnel and risk of fire within approximately three metres. Heavy fume is given off hence:

(i) Work areas should be chosen to minimise the risk of combustible materials such as wooden structures, paper, wood products or fabrics being ignited by either hot particles or radiant heat

(ii) Buildings in which the process is used should be well ventilated to prevent the build-up of a high level of fume (See Section 17.8.8)

(c) Personal protective equipment – protection against heat and molten or hot particles is required for those working within about three metres of the process.

(i) Full-face shields or equivalent are required. Also protective filters to shade 2 or 3 are recommended to avoid excessive exposure to intense visible radiation (Chapter 19)
8.3 Electron Beam Welding

8.3.1 Process

The electron beam process is used in the automotive industries and in other specialised areas, particularly aircraft and aerospace. Its capabilities for welding heavy wall material, has led to its application in pressure and containment vessels.

The essential parts of an electron-beam welding machine are:

(a) A dynamically evacuated work chamber, in which is enclosed the work to be welded
(b) An electron gun, with a means of traversing the workpiece or the electron gun to follow the contour of the weld
(c) A power pack that supplies the low and high voltages to generate, accelerate and focus the electron beam

Typically voltages of 30-200 kV are used in the process, filler metals are not normally used and the process is operated in the key-holing mode.

The potential hazards of the process are as follows:

(a) Electric shock
(b) Radiation
(c) Fumes and gases
(d) Physical

8.3.2 Precautions

(a) Electric Shock – the safety of the equipment or the exterior of the equipment is largely the responsibility of the designer and manufacturer. The owner and operators of the equipment must ensure all protective equipment is maintained in excellent working order. This applies to A1337 Personal eye protection Parts 4 and 5.

(b) Radiation – an electron beam system is capable of generating X-rays. If electron beam equipment is inadequately shielded it could result in personnel being exposed to undesirable levels of radiation. The design of the machine should prevent a radiation hazard by the thickness of the chamber walls and the lead glass viewing areas. The material being welded and the maximum operating currents are the main fac-
tors associated with the level of radiation. Equipment should be test rated for maximum radiation levels. Where lead (Pb) is employed as a radiation barrier it should be mechanically supported and properly protected to avoid accidental damage. Regular checking of shielding protection by properly trained personnel should be carried out to ensure that deterioration is not occurring. The regular checks should be recorded for reference, to assess deterioration with time.

Non-vacuum and partial vacuum electron beam systems need to have X-ray protection screens employing moving or tunnel type shielding.

(c) Other radiation – electron beam produces a high degree of infrared, visible and ultraviolet energies. The viewing panels of lead glass should provide adequate protection against this form of radiation. Where electron beam welding is done in non-vacuum, adequate eye protection is required.

(d) Fumes and gases (Toxic Hazard) – toxic fumes and gases may be generated by electron beam equipment – specifically ozone (O₃) and various oxides of nitrogen (NO and NO₂) in particular. The material being welded could also produce toxic fume, e.g. beryllium, copper.

Environmental measures are necessary for external venting and filtering. The material deposited on the walls of the vacuum chamber can be readily airborne and hence there is a risk of inhalation.

Before entry into the work chamber the toxic gases and fume must be reduced to a safe level. Exhausting fumes must be safely discharged where personnel cannot breathe them.

Non-vacuum and medium-vacuum electron beam machines have the potential to form toxic fumes and gases in the atmosphere surrounding the arc. These types of electron beam machines must have adequate ventilation.

High vacuum systems are unlikely to produce ozone and oxides of nitrogen as there is insufficient air available. The non-vacuum and partial vacuum types are able to produce quantities of these gases.

(e) Physical hazards – it should be borne in mind that materials welded in vacuum do not cool as quickly as in air. Hence, care should be taken to avoid burns.

8.4 Electroslag Welding and Consumable Guide Welding

8.4.1 Process

Figure 8.2 illustrates the essential features of this welding process. The illustration shows a single wire and single guide, however, where heavy wall sections are welded, there are multiple wires and guides employed. The welding operation is similar to a casting process with moulds constructed of copper or aluminium. Flux to provide a slag cover for the weld pool is added by the operator, or may be combined with the consumable nozzle in the form of flux ferrules.

Because the welds are carried out vertically the structures have to be erected and, depending on the length of the joint, scaffolding may have to be also erected. Due attention has to be made to the stability of the structure and safety of the personnel working on scaffolding. The fixtures for holding the cooling shoes should take into consideration the safety of personnel working in the location.

8.4.2 Precautions

Electrical Safety Precautions, as outlined in Sections 4 and 14, apply here because of exposed consumables. However, the operating voltages in the range from 38-55 volts are above the normal operating range (but not above values for open circuit voltage).

(a) Eye protection – protection is required for the following reasons:

(i) UV radiation is not emitted. Filters of shade 3 are sufficient to protect against other radiation if the pool is viewed

(ii) Hot particles may be ejected from the weld pool if insufficient slag is present

(iii) On removal of moulds hard slag particles often require considerable force to detach and hence goggles with hardened lenses should be worn.
(b) Dust – the flux added to the weld can produce quite high dust loads and care should be exercised in adding the material. Care should also be exercised in handling the material to avoid the formation of dust.

(c) Gases – nitrogen dioxide, carbon monoxide and ozone are formed in the welding process and adequate ventilation should be provided.

(d) Heat radiation – ambient temperature rises in the vicinity of the weld and adequate protection must be provided for operators. The operation of removing cooling shoes subjects the operator to considerable radiant heat. The effect is increased with the thickness of the material being welded.

(e) Fume – consists mainly of fluorides, manganese, silicon, iron, titanium and other elements. The fume load is low, however, in confined areas consideration to local extraction or ventilation should be given.

(f) Physical hazards – with incorrectly fitted moulds or incorrect welding conditions excess penetration can cause run out of slag and weld metal. Protective gloves and goggles, aprons, spats and boots are recommended.

(g) Water supply -adequate supply with continuous flow is required to prevent overheating or melting of moulds. Contact of the weld pool with water is dangerous as the sudden formation of steam will cause an explosion. Ensure water cannot enter the weld region during or immediately after welding. Plastic hoses should not be used as hot water can soften them, causing displacement and leakage.

8.5 Explosive Welding

This process is highly specialised and must comply fully with the requirement of the explosive supplier and statutory authorities. Proven procedures and qualified personnel must be used.

The process is normally used for cladding plate and is supplied by specialist manufacturers.

Variants of the process may be used for tube/tube plate welding in normal fabrication shops. In such cases personnel must be adequately trained and special requirements relating to the use and handling of explosives must be observed.

8.6 Friction Welding

Friction welding may be divided into two modes, the conventional moving workpiece mode and the more recent rotating tool mode known as friction stir. In the conventional friction welding mode the two parts to be joined are oscillated or rotated in contact to generate friction heating prior to forging. In friction stir welding process a rotating tool is moved along the seam to be joined. In both cases the operation involves machines with moving parts and relatively high applied force.

Such equipment should be adequately guarded and the operators fully trained in the process. Appropriate protective clothing and safety glasses should be worn. Loose clothing that may be caught in the rotating parts of the machine should be avoided and long hair should be tied back or covered with appropriate headgear. These processes often generate noise and hearing protection should be provided.

8.6.1 Friction Stir Welding

The equipment required is large and robust with high stiffness requirements and high clamping forces utilised in jigs and fixtures to maintain alignment of components. The main safety concerns are related to manual handling and mechanical hazards. The welding tool rotates and either the component is moved or the tool is moved along the weld joint. Prevention of contact with moving parts, e.g. by guarding, or light screens may be required.

As with other friction welding processes there is no UV-radiation, there is no welding fume and there is no spatter. While there is significant heat generated at the tool, there is no hazard to the operator.
BRAZING AND SOLDERING

9.1 Brazing and Soldering Processes

Although these groups of processes differ in operating principles and techniques, they have sufficient in common to warrant joint consideration in respect of health and safety consideration. They can be conveniently sub-divided in respect of their joining temperature and heating source as this largely determines the safety precautions required. Other factors include the consumable type (flux and filler), aspects of pre- and post-joining cleaning, and proximity to work.

Table 9.1 gives joining temperatures and Table 9.2 lists the processes, their heat source and particular risks.

Table 9.1 Brazing and Soldering Temperatures

<table>
<thead>
<tr>
<th>Process</th>
<th>Main Filler</th>
<th>Joining Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldering (Note)</td>
<td>silver, tin or lead</td>
<td>< 400°C</td>
</tr>
<tr>
<td>Aluminium Brazing</td>
<td>zinc or aluminium</td>
<td>450-600°C</td>
</tr>
<tr>
<td>Silver Brazing</td>
<td>silver and copper</td>
<td>650-800°C</td>
</tr>
<tr>
<td>Copper – Phosphorus Brazing</td>
<td>copper, silver, phosphorus</td>
<td>650-800°C</td>
</tr>
<tr>
<td>Brazing of Copper, Gold, high</td>
<td>copper, gold, nickel,</td>
<td>520-3000°C</td>
</tr>
<tr>
<td>temperature metals, reactive</td>
<td>and/or special metals</td>
<td></td>
</tr>
<tr>
<td>and refractory metals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Also called soft soldering

9.2 Brazing Hazards

The amount and toxicity of fume is dependent largely upon the process and the type of filler metal and flux used. Accordingly, ventilation requirements are in turn largely determined by these factors. It should be noted that fluxes, fillers, salt baths etc. are designed with optimum temperature ranges. Heating to temperatures above the range will always substantially increase the amount of fume generated.

In addition to fume, the welder needs to avoid direct contact with certain salts etc. Particular safety aspects of fluxes, filler metals and process details are discussed below.

9.2.1 Fluxes

(a) Low temperature silver brazing fluxes – the fume given off by these fluxes may contain small quantities of hydrofluoric acid and boron trifluoride. They have an irritating effect on the eyes, nose and respiratory tract and can cause dermatitis if there is skin contact with fume or the flux.

Local exhaust ventilation is required for all but intermittent work and must be used in dip brazing operations.

Barrier type cream should be used for protection of skin on the face, hands and forearms. However, care should be taken to prevent contamination of surfaces to be brazed with protective cream as this may affect brazing performance.

Abrasions or skin cuts require immediate cleaning and protection by waterproof adhesive dressing. Thorough washing of hands (including nail cleaning) and other exposed skin is required after work and before eating, drinking or smoking. Foodstuffs and drinks are to be separated from the working area at all times.

(b) High temperature boric acid fluxes – no significant ill effects have been observed with these fluxes

(c) Sodium carbonate and nitrate salt baths – these processes are chiefly used for aluminium brazing. No significant fume hazards have been observed. As the precise constituents of the baths may not, however, be known, it is wise to adhere to recommended practices. Temperature of salt baths should be maintained within the recommended operating range

(d) Cyanide salt baths – due to the highly toxic nature of cyanide fumes, protection with respect to breathing or absorption through skin or ingestion is required. Additionally, storage facilities for cyanide salts and acids must be such that no possibility of accidental formation of hydrogen cyanide gas exists.
Exhaust ventilation must ensure hazardous concentrations of fume do not occur.

Protective clothing that prevents contact of fume or salts is required as absorption through skin may result in poisoning or dermatitis.

Meals and refreshments must not be taken in the immediate workplace.

Burns due to splashes from cyanide baths must receive immediate first aid. Immediately flood the affected area with water. A buffered phosphate solution that can neutralise both acids and alkalis should be available.

Special first aid facilities must be readily available for cyanide poisoning. The nearest hospital should be alerted to the fact that cyanide salts are in use.

9.2.2 Filler Metals

The toxicity of brazing fume is also increased by the following constituents:

(a) Cadmium – some filler metals, e.g. some copper-silver-zinc types, contain cadmium that is extremely dangerous in fume and dust form. The amount of cadmium fume increases rapidly as the heating temperature increases in excess of the optimum heating range. Correct brazing conditions greatly reduce the hazard. Deaths have occurred due to cadmium poisoning. Cadmium free filler metals are available.

(b) Zinc – in brazing, some zinc fume will be produced where zinc is present in the filler metal, parent metal or coating. Good natural ventilation and welding practice should be used. In poor ventilation conditions more positive ventilation is needed.

Medical attention is advised after significant exposure.

(c) Beryllium – this element may be present in some aluminium or magnesium brazing alloys and is also present in many copper alloys. Although the welding of beryllium containing alloy is known to be hazardous, the situation with respect to brazing is not clear. It is strongly recommended however, that the following precautions be applied.

Local exhaust ventilation should be used in all circumstances. Filters are required to prevent discharge to either the workshop or outside atmosphere.

Regularity analysis of breathing zone and background (workshop) air is advised. Consultation with statutory authorities should be taken before handling beryllium in any form to determine appropriate requirements for personal protection and hygiene.

(d) Other metals – may be present but constitute a lesser hazard.

Consider the use of respiratory protection if fume exposure levels are above the exposure Standard AS/NZS 1715 Selection, use and maintenance of respiratory protective devices.

9.2.3 Explosion and Fire

9.2.3.1 Possible Sources

In addition to the gases used for flame or gas heating the sources of possible explosion and/or fire are furnace brazing atmospheres, and nitrate or nitrite salt baths.

9.2.3.2 Flame and Gas Heating

See Chapter 5 for precautions.

9.2.3.3 Brazing Atmospheres

(a) Purging of air from furnaces is required prior to heating as some brazing atmospheres are explosive or flammable in the presence of air.

(b) Pilot lights that ignite protective flames in some brazing furnaces should always be maintained.

(c) Exhaust and safely discharge all explosive or toxic gases that arise from purging operations or brazing operations.

9.2.3.4 Nitrate and Nitrite Salt Baths

(a) Salts must be dry before being added to the bath, to prevent steam explosions.

(b) Aluminium must not be heated in the nitrate salt baths used for dip brazing steel because of possible explosive reaction between aluminium and nitrates.

(c) Aluminium brazing is safely carried out in nitrite salt baths.

(d) Oils, tar, plastics, their residues and other carbonaceous materials also explode in contact with molten nitrate salts. Such a blast propel droplets of molten flux into the work place.

(e) Handling of nitrate salts, especially when dry, requires great care because of risk of forming explosive mixtures. Procedures approved by the appropriate authority (Appendix B) must be employed.

9.3 Soldering Hazards

9.3.1 Toxic Fume and Salts

(a) Active (zinc chloride) soldering fluxes – zinc chloride is toxic if taken internally and can cause eye or skin irritation. Irritation resulting in the formation of ulcers in nasal passages is also possible. Considerable care is required in the handling of active fluxes.

(b) Rosin based (safety) fluxes – the principle constituents are colophony (pine resin) and in many fluxes a volatile solvent such as isopropyl alcohol. Fluxes and fumes can cause skin disorders (e.g. dermatitis).
or unpleasant irritation to nasal passages or cause symptoms such as nausea or sleepiness. Asthma sufferers often experience irritation and an asthma reaction sometimes occurs in others. People who exhibit such sensitivity should be given work in an area free of fume from this flux (c) Phosphoric acid based (stainless steel) fluxes – phosphoric acid is not volatile but spray may be generated. Contact with skin and eyes must be avoided

9.3.2 Safety Precaution for Fluxes
(a) Local exhaust ventilation is required when large quantities of active flux are handled e.g. dip soldering
(b) Safety goggles or screens are required where splashing of flux occurs or where fume is present
(c) Barrier creams should be applied to hands and forearms
(d) Protective gloves are discouraged. Once contaminated by zinc chloride cleaning is extremely difficult and they can then promote dermatitis
(e) Cleaning of hands cannot be carried out with ordinary soaps, and the use of solvents must be avoided. Obtain safe and effective hand cleaners to AS 1223 Industrial hand cleaners (Petroleum solvent type)
9.3.3 Toxic Fume from Solder

Tin and tin fumes (tin oxide) are of low toxicity. The main problem arises from lead, a constituent of most soft solders. Because of the relatively low vapour pressure of lead at normal soldering temperatures, lead fume is not usually regarded as a problem (References 10, 11). Where solder baths are used, however, substantial quantities of dross containing fine lead oxide dust are produced and this may be dispersed by mechanical action as the bath is used, so that an extraction hood is recommended. Dross removal must be carried out in such a way as to avoid dispersing lead oxide dusts. In can soldering lines, where a high lead solder is used, solder droplets and lead oxides are mechanically propelled into a large area surrounding the line and local exhaust ventilation is required.

Cadmium is used in low melting point (tin-based) and higher melting point (lead-based) solders. In the low melting point solders fume is not a problem but precautions against inhaling fume from the higher melting point solders are necessary.

9.3.4 Fire Hazard – Rosin Based (Safety) Fluxes

These soldering fluxes contain flammable solvents. Although the risk of fire or explosion is not high, basic precautions should be applied. Rosin based solders have also been cited as a possible cause of industrial asthma and suitable local ventilation must be provided for the operator. Precautions include:
(a) Store all supplies in closed containers
(b) Naked lights or other ignition sources must be kept away from open flux baths
(c) Extinguish any flux bath fires by exclusion of oxygen, e.g. cover containers with metal sheets or flameproof sheeting

9.4 Electrical Hazards

The possibility of electric shock arises in processes such as resistance or induction methods and other processes using electric power as a heat source. The usual requirements in respect of installation and maintenance, use of procedures and protective clothing devices apply. These are similar to those in Chapter 4. See also Chapter 14.
(a) Avoid contact with work coils in induction processes as slow healing deep skin burns can occur
(b) Cabinets must not be opened until power is disconnected. Safety switches preferably of the fail-safe type are recommended

9.5 Eye Injuries

These may result from radiation in flame processes or from hot liquid metals or fluxes.
(a) Goggles with suitable protective filters are required for flame (torch) blazing or soldering (Chapter 19)
(b) Full Face Shields are required for operations involving salt baths or solder baths (Chapter 19)

9.6 Cleaning Hazards

See Metal Preparation Section 10.3.1 Chemical Treatments.

9.7 Burns to Body

In addition to burns to the eye, various parts of the body, particularly the hands and arms may suffer burns due to hot metal or parts. Good equipment, work procedures and protection should be used.

Salt and solder baths and pots must be designed so that, when heated from cold, the top melts first. In this way the possibility of ejection of molten solder through a solid crust is prevented.
10.1 The Need for Metal Preparation

Metal surfaces need to be cleaned prior to welding to remove materials that may lead to an inferior weld and/or adversely affect the working conditions and health of the welder.

Metal surfaces may be covered with a variety of materials such as rust and scale, paints and surface coatings, plastics, greases and oils, and galvanising. Metal preparation not only involves checking visible surfaces but also:

(a) What is behind the metal work surface
(b) What may be in or has been in a pipe or duct
(c) What may be adjacent to or in the vicinity of the welding operation

A thorough hazard identification and risk assessment is recommended before carrying out any metal preparation processes to determine:

(a) The nature of the coating
(b) Whether the coating be affected by the hot-work process
(c) Whether the coating has to be removed to eliminate the hazards associated with reactions resulting from hot-work
(d) Whether the coating removal process or products of the process create new hazards

10.2 Metal Cleaning Processes

Metal surfaces and edges may be cleaned, treated or finished using either physical or chemical processes. Some of these processes or operations are:

10.2.1 Chemical

(a) Chemical plate de-scaling
(b) Degreasing
(c) Surface coating or paint removal

10.2.2 Physical

(a) Abrasive de-scaling
(b) Mechanical edge preparation; shearing, guillotining, nibbling, machining; air-arc gouging (See Section 4) and flame cutting (See Section 5)
(c) Grinding of plate and final welds
(d) De-slagging, chipping
(e) Chiselling
(f) Peening
(g) Flame cleaning

These processes introduce mechanical, chemical and heat hazards that necessitate suitable precautions.

10.3 Precautions with Preparation Processes

Welding personnel will be involved, or closely associated, with a number of the above processes but may encounter some on only rare occasions. The following are the main precautions that should be observed with the above processes.

10.3.1 Chemical Treatments

If in the immediate vicinity of the process, observe all the applicable precautions specified for handling corrosive materials and solvents. Material Safety Data Sheets (MSDS) should be obtained for all the chemicals being used in the process. In turn, these Sheets should be used to develop safe working procedures.

10.3.1.1 Caustic Solution Cleaning

This process is often used to clean off paints and surface coatings as well as to clean brazed assemblies especially in aluminium. Caustic cleaning solutions, especially if hot and/or concentrated, will give off corrosive and strongly irritant fumes. Caustic solutions cause burns to skin and eyes. When in contact with many metals, especially aluminium, they can cause hydrogen gas to be evolved. This means precautions against fire and explosion must be taken.
CHAPTER 10

10.3.1.2 Acid Solution Cleaning

Again the major hazards are skin/eye contact and fumes. The hazard is increased when hot and/or concentrated solutions are used. The precautions are similar to those for caustic solutions above. Neutralising materials such as sodium bicarbonate should be available in case of spillage. Acid burns need to be treated immediately with running water, not neutralising solution. Particular care needs to be exercised if nitric acid or hydrofluoric acid is being used. Nitric acid on contact with organic materials such as cotton, sawdust and so on will form flammable and potentially explosive compounds. Hydrofluoric acid, especially if dilute, does not give immediately obvious burns but penetrates the skin to do severe damage to tissue and bone underneath. Hydrofluoric acid should not be used except with specific safety procedures.

Precautions to be taken include:

(a) Use local ventilation
(b) Use full protective clothing and footwear
(c) Use full-face shield - acid can cause severe eye damage
(d) Use barrier creams for exposed skin
(e) Maintenance of adequate emergency showers and eyewashes
(f) Proper safety procedures for handling corrosive chemicals

10.3.1.3 Pickling and Passivation pastes

Pickling and passivation pastes used for the cleaning of stainless steels after welding often contain strong alkalis or acids including nitric acid and/or hydrofluoric acid. The paste manufacturer’s MSDS should always be consulted prior to the use of such pastes and any instructions for safe use complied with, including recommended safety precautions. This is particularly critical for pastes containing hydrofluoric acid, as even small concentrations (as low as 2% HF) are capable of inflicting very serious burns.

10.3.1.4 Degreasing Chemicals

Where solvents are being used, precautions to limit worker exposure and the risk of fire (with hydrocarbon solvents) are required. In general, degreasing solvents fall into three categories: water based, hydrocarbon and halogenated hydrocarbon solvents.

Water based degreasers generally contain detergents and surfactants. They are the least hazardous but have a number of technical deficiencies.

Hydrocarbon solvents are flammable and sometimes form toxic gases when burnt.

Halogenated solvents (usually chlorinated hydrocarbons) are not flammable but decompose on exposure to heat or ultraviolet radiation to form toxic gases including phosgene. Even halogenated solvent fumes drawn through a cigarette may produce toxic decomposition products. In addition, chlorinated hydrocarbons can form potentially explosive compounds with aluminium.

Regardless of type, the degreaser will remove skin oils from exposed skin. This will initially cause dry skin and irritation but may also lead to dermatitis. The use of degreasers in confined spaces is particularly hazardous, not only from higher toxic fume levels but also from simple asphyxiation.

The following precautions are necessary with degreasing processes:

(a) Degreasing of large areas should be carried out in special areas remote from the welding operation (Refer to AS 1627.1 Metal finishing – Preparation and pretreatment of surfaces - Removal of oil, grease and related contamination for details)
(b) Welding must not commence until the degreasing solvent is completely removed from the surface and from the area
(c) Where degreasers are expected to evaporate, welding must not commence until the surface is dry and ventilation has removed any fumes
(d) Degreasing solvents must be stored well away from welding operations
(e) These measures are necessary because many chlorinated hydrocarbon degreasants are heavier than air and the vapour may travel a considerable distance from the area in which it is being used

10.3.1.5 Solvent Paint Strippers and Removers

These are usually strong caustic solutions or products based on halogenated hydrocarbons. See Sections a) and c) above and always refer to manufacturers’ MSDS.

10.3.2 Physical Treatments

The main hazards with these processes are the physical hazards of high velocity particles, noise, vibration, the moving parts of machinery and tools, and the creation of dusts. Protection against high velocity particles involves putting barriers between the source of such particles and workers. Such barriers may be a blasting cabinet/room, or personal protection (See Chapter 19). Adequate eye protection is critical. Noise and vibration are discussed in Chapter 18. Of particular concern is noise in confined areas and excessively vibrating tools. Equipment must be
properly guarded and adequately maintained to minimise risks to personal safety. Dust can present both a health and fire/explosion hazard. The dust comes both from the abrasive grit and the surface being treated.

The health hazards of dust can be controlled by:
(a) Using less hazardous processes or materials
(b) Ventilation of fumes, dusts etc. (See Chapter 17)
(c) Personal protection (See Chapter 19)

The residues from blasting may themselves be, or form with other materials, a significant dust fire and explosion hazard (See Section 11.4).

All hand tools and other equipment must be maintained to optimise their operation and minimise the risks to users. Operators must be adequately trained and supervised in the use and day-to-day maintenance of equipment.

Blasting and other operations must comply with state regulations. Such regulations can be ascertained by contacting offices of the responsible government department.

10.3.2.1 Abrasive Plate Descaling and Cleaning
This process uses abrasive blasting to remove surface coatings or to clean up the surface. The process may use metallic shot grit, chopped wire and the safer non-metallic grits. High velocity particles and air blast are the main hazards. The relevant safety procedures pertaining to the particular equipment and abrasive compound must be observed (Refer to AS 1627.4 Metal finishing – Abrasive blast cleaning of steel).

10.3.2.2 Mechanical Edge Preparation
Shearing, guillotining, nibbling and machining operations should be carried out using equipment and procedures that meet relevant safety standards. In addition, persons suitably trained in the safe use of such equipment should carry out the work.

10.3.2.3 Grinding and Abrasive Disc Cutting
Grinding and abrasive disc cutting present similar hazards to abrasive plate descaling. However, since they are typically a manual operation the hazard level can be significantly higher. Special care is required with abrasive cutting and grinding discs to avoid rupture.

The disc must have a speed rating at least as high as the maximum spindle speed of the tool. Care must be exercised to ensure the disc is not overloaded or shock loaded. Abrasive cutting discs are often used incorrectly, e.g. for grinding operations, resulting in greater than intended stress and a possibility of disc failure.

Guarding must always be in place, correctly positioned and adjusted. Handles must be fitted and used. Incorrectly fitted or missing guards and operators not holding the grinding tool correctly with both hands are the cause of many injuries.

Use of incorrect disc support washers also results in excessive stress on the disc and can lead to failure.

There is high kinetic energy in a high-speed angle grinder. Due to the high incidence of serious injuries related to the use of larger angle grinders (230 mm or 9 inch), many companies in Australia have introduced strict controls on the use of angle grinders, particularly the larger types.

The use of full-face shields complying with AS/NZS 1337 Personal eye protection ‘high impact resistance’ is recommended. Welding helmets that comply with AS/NZS 1337.1 Section 5 Additional requirements for assembled eye protectors for welding and allied operations are only required to meet medium impact requirements and are therefore considered to be inadequate for face and eye protection while using grinding tools.

10.3.2.4 De-slagging, Chipping, Chiselling and Peening
The major hazard is from eye injury (refer Chapter 19).

10.3.2.5 Flame Cleaning
The major hazard is eye injury (refer to Chapters 5 and 19 and AS 1627).

10.4 Coated Metals
Coated metals may require special precautions that are dealt with in Section 17.10.

10.5 Contaminated Surfaces
In maintenance or repair work, the surfaces to be welded etc. may be contaminated with various materials. Unless materials are known to be non-hazardous, they should be treated as above in Sections 17.2, 17.10 and also Chapter 21 on working in or on containers and pipes.

10.6 Metal Preparation in Special Locations
Special hazards arise in metal preparation operations in the following specific locations:
(a) In confined spaces (refer Chapter 20)
(b) In or on containers (refer Chapter 21)
(c) On pressurised equipment (refer Chapter 22)
(d) In refineries and chemical plants (refer Chapter 24)
(e) At heights or underneath construction (refer Chapter 25)

See also Section 16.3.2 regarding use of non-sparking tools to avoid an explosion.

42. European standards use the same velocities as listed in AS/NZS 1337 but use a 6.0 mm steel ball instead of a 6.35 mm, so conformance to European impact resistance classifications are not directly equivalent since the kinetic energy of the impact for the European tests are only 84% of the kinetic energy applied by the Australian tests.
11.1 Introduction

Metal spraying is used to deposit a variety of metals, non-metals and ceramics as an overlay on components. It is used both in mechanised and manually operated forms. Figure 11.1 illustrates the spraying processes.

11.1.1 Basic Compounds

The basic components of metal spraying equipment are:

(a) Source of heat:
 (i) Oxygen-fuel gas torch (Chapter 5) (See Figure 11.1(a))
 (ii) Wire-arc gun (See Figure 11.1(b))
 (iii) Plasma gun (Chapter 6) (See Figure 11.1(c))

(b) Wire or powder feed to supply the overlay material into the flame or arc

(c) Compressed air to project molten particles onto the surface of the component being overlaid (wire-arc and oxygen/fuel gas processes only)

11.1.2 Hazards to Health

Hazards to health and safety that are more likely to arise in metal spraying processes than in other welding or allied processes (Reference 12) are:

(a) Fire and explosions of gas (Chapter 16)
(b) Dust fires (Chapter 16.3)
(c) Poisoning or respiratory difficulties due to dust
(d) Skin disorders due to dust
(e) Radiation – eye and skin hazards (Chapter 15)
(f) Electric shock (Chapter 14)
(g) Noise (See Chapter 18)
(h) Burns
(i) Fume/particulates

The precautions required in respect of these hazards are discussed below.

11.2 Surface Preparation

Abrasive blasting is a commonly used method of surface preparation for metal spraying as it provides a good surface for adhesion.

Special precautions and restrictions apply to abrasive blasting (See Section 10.3.2.1).

11.3 Gas Fire and Explosion

As with any process that uses oxygen-fuel gas systems, care is required to ensure that malfunctions or dangerous practices do not arise. These are:

(a) Precautions with gases – the requirements for safe handling of gas supply and distribution outlined in Section 5 should be adhered to
(b) Spraying guns – it is advisable to use guns of modern design that minimise the possibility of obtaining a mixture of oxygen and fuel gas in the gun, i.e. guns having individual diaphragm valves for oxygen, fuel gas and compressed air. Guns should be maintained in accordance with the manufacturer’s instructions
(c) Nozzle backfire -wire pistols have a slight tendency to backfire due to heat conduction back through the wire. For pistols that operate at critical pressures, safety devices are incorporated to prevent flashback into pressure hose. When backfire occurs, nozzles should be replaced
(d) Gas leakage – care is required to ensure leakage does not occur from valves, regulators, and nozzles or from gas supplies left on without lighting them. Explosive gas mixtures can build up very quickly especially in small working areas

11.4 Dust Fire and Explosion

11.4.1 Need for Precaution

Accumulated metal dusts are, under certain circumstances, capable of burning or exploding. Although this situation is likely to arise only very rarely, the possible results are such that stringent precautions are required. These are given below.

11.4.2 Flammable Metal Dusts

The reactive metals that, when finely divided (in the form of dust) may burn in air are; aluminium, zinc, magnesium and titanium. Spraying or grinding these metals often produces the dust.
Metallic dust fires are slow moving and difficult to extinguish. Ignition may be brought about by:
(a) Hot (molten) spatter
(b) Electric shorts from cable with damaged insulation

Explosion may result if burning dust is stirred up into a cloud, providing oxygen access to a large surface area of hot metal.

Fight metal dust fires with procedures tailored to these special characteristics as described in Section 16.3.4.

11.4.3 Self-Burning Dust Mixtures

Many metal oxides may provide the oxygen necessary for the combustion of the reactive metals listed in Section 11.4.2 without the need for any other air or oxygen. This aluminothermic reaction rapidly generates high temperatures (white heat) and showers of sparks. It is the type of reaction used in the aluminothermic welding process (Section 8.1).

The most commonly met oxides that can so combine with the metals listed in 11.4.2 are:
(a) Iron oxide from blasting, grinding, cutting etc.
(b) Copper oxide
(c) Tin oxide
(d) Lead oxide

Fire fighting procedures are given in Section 16.3.4

11.4.4 Collection of Metal Ducts

(a) Vacuum cleaners of flameproof design should be used to keep dust accumulation to a minimum
(b) Workshops designed for metal spraying should have smooth walls and a minimum of ledges or obstructions on which dust accumulations are possible
(c) Metal spraying and blasting should, wherever possible, be carried out in completely separate rooms.
(d) Metal ducts should not be freely discharged to air
(e) Water wall spraying booths (Figure 11.2) collect metal dust at the source by flooding it with water, allowing safe disposal
(f) Wet scrubbers are preferable to dry dust collectors
(g) Bag or filter type collectors should be sited outside the workrooms and fitted with explosion relief doors
(h) Cyclones should be protected against the entry of moisture as reactive metal dusts (Section 11.4.2) are capable of spontaneous combustion in humid conditions or when partially wetted

(i) Ventilation ducting should be designed and operated as recommended in Section 16.3.3

11.4.5 Prevention of Dust Fire and Explosion

The evidence currently available indicates that the particle size of dusts formed in metal spraying is rather larger than that which would constitute any appreciable risk. Nevertheless, this risk must be assumed to be present and appropriate precautions taken.

Prevent dust fire and explosion by observing the recommendation of Section 16.3.

11.5 Health of Operators

Metallic dusts generated in metal spraying may result in a variety of health problems in workers ranging from quite short-term effects to a serious deterioration in health. Adoption of efficient ventilation facilities and, in severe situation, a positive airflow respirator will obviate these problems. In modern metal spraying, deterioration in health due to exposure of dusts is very rare. It is as well, however, to be aware of the possible consequences of excessive exposure.

(a) Larger particles – nose and throat irritations are the major hazards resulting from particles of size greater than about 5 microns. Discomfort is likely but such particles are generally not dangerous

(b) Small particles – lung deterioration can be associated with particles of a size less than 5 microns, and particularly if less than about 1.5 microns, which may become trapped in the lungs. Dependent upon the type of dust an impairment of lung functions and long-term deterioration can occur

(c) Zinc spraying – zinc spraying can result in operators being affected by metal fume fever. Although symptoms vary, it is in many ways similar to mild influenza. There appears to be no long-term effects and recovery generally occurs about eight hours after removal from fume exposure

(d) Lead spraying – lead is a cumulative poison and can have very serious consequences. Stringent statutory regulations apply to conditions of work, and medical examinations are required (e.g. routine blood tests) in industries where lead poisoning or absorption can occur. Such regulations must be adhered to and strict supervision of workers must also be practised

(e) Cadmium spraying – cadmium fumes may also cause poisoning that can be fatal in acute cases. Good ventilation must be ensured and strict adherence to statutory provisions is required (See Appendix B)

(f) Other metal powders -alloys that contain manganese, cobalt, vanadium, nickel or chromium should be treated with great care. Reference should be made to the relevant exposure standards, Appendix C.

(g) Skin disorders – dermatitis can affect some people. Barrier creams may be effective in prevention but in any case a doctor should be consulted. Where chronic, a change in occupation may be required

11.6 Personal Protective Equipment

(a) Goggles are required to provide protection against infrared and ultraviolet radiation and from flying, sometimes molten particles. Filter selection depends upon the process being used (See Chapter 19) (Due to the high arc energies involved, stronger filters may be required to reduce ultraviolet radiation)

(b) Hearing protection is required with some metal spraying guns that are excessively noisy e.g. arc and plasma (See Chapter 18) (Earplugs and muffs are commonly used in combination)

(c) Work clothing and footwear should be chosen to minimize the possibility of burns or injury due to molten particles

(d) Respiratory protection devices are determined by the nature, type and magnitude of the fume and gas exposure (See Chapter 17 and Section 19.6)

11.7 Metal Spraying Guns

It is important to recognise the potential hazards with defective guns that use compressed air, oxygen and a fuel gas (See Chapter 5).

(a) Flashback or unexplained blowouts require the cause of failure to be found and eliminated before re-lighting

(b) Oil should not be allowed to enter gas passages or mixing chambers. Only those lubricants recommended by the manufacturer can be used

(c) Acetylene gas can only be used in guns specially designed for this gas. High issuing velocities that are not achievable in other gun types are required to prevent the flame from burning back into the mixer

11.8 Spray Booths

The operation should be carried out at a negative pressure to prevent fume affecting nearby personnel. A manometer can be used to ensure a visual indication during operation.
Heat Treatment Processes

12.1 Type of Process
Heat treatment in various forms is extensively used in welding applications. Examples are found in preheating of weldments and post weld heat treatment such as stress relief or occasionally normalising and solution heat treatment.

Salt bath heat treatment is not normally applied to weldments but appropriate precautions are given in Sections 9.2, 9.5 and 9.7.

12.2 Hazards
Hazards arise through heat treatment. A thorough hazard identification and risk assessment should be carried out before commencing any heat treatment activity. Important features for consideration are:

(a) Location – where possible, post-weld heat treatment should be carried out where personnel cannot touch the workpiece. Care needs to be exercised in preventing contact with workpieces either during heat treatment or during subsequent cooling.

(b) Insulation – to prevent skin contact with heated surfaces, suitable thermal insulating materials should be provided. Insulating materials can also create hazards, particularly when they break down to form airborne particles after repeated use or high temperature exposure.

(c) Warning signs and barriers – these will be required in working areas where safe relocation of the workpiece cannot be carried out.

(d) Protective clothing – heat resistant protective gloves and clothing will be required where preheat temperatures are such that they give rise to risks of burns (See Chapter 19). Respiratory protection is required where there is exposure to airborne particles.

(e) Burns – no matter how minor, all burns should receive first aid. Burns constitute the principle hazard that can arise from heat treatment but there are also specific hazards that are related essentially to the heating process used (See below)

(f) Heat stress – heat stress can be severe in confined areas (See Chapter 23)

(g) Fire and explosion – there are many issues to consider in preventing fire and explosion during heat treatment processes. They can arise from:
 (i) The component or its contents being flammable
 (ii) The heating process if it involves combustion of fuels, or
 (iii) The effect of the activity on the surrounding environment e.g. supports or other neighbouring items that are heated by the process

(h) Ventilation of closed spaces – closed spaces must be identified and vented before heat is applied. Failure to adequately vent can lead to pressure build up, ruptures and explosions

12.3 Flame Heating
Oxygen-fuel gas systems are frequently used for both pre- and post-weld heating. Precautions common to all oxygen-fuel gas systems have to be adopted (See Chapter 5). Particular considerations include the following:

(a) Fire and explosion – exercise care in handling of all equipment, take precautions to avoid leakage and build-up of oxygen or fuel gases (See also Chapter 16)

(b) Ventilation – in confined spaces, build-up of fuel gases, carbon dioxide or carbon monoxide can occur. Care is required to ensure gas supply systems are leak-tight (Chapter 5) and that appropriate ventilation is provided (Chapter 17). The requirements of AS/NZS AS 2865 Confined spaces should be met.

12.4 Electrical Heating
Electrical resistance heating is commonly used and in many situations electrical power is obtained from welding plant or other appropriate generators or transformers. To ensure safety in respect of electrical safety and operation of equipment, the following considerations apply:

(a) Electric plant (refer Chapter 4)

(b) Electric shock protection (refer Chapter 14)

43. Fibreglass, rock wool and aluminosilicate, for example, may shed fine airborne particles and for respiratory protection it is recommended that exposures be limited by use of a suitable dust mask.
12.4.1 Resistance Heating Elements

Resistance heating elements can reach temperatures in the order of 1,000°C when in operation. The power sources are a.c. output and operate at similar voltage to MMAW power sources so there is a similar electrical hazard. It is therefore critical that measures are in place to prevent contact with any uninsulated conductive parts.

12.5 Thermal Distortion

In any heat treatment activity the effects of thermal expansion must be predicted and managed. Thermal expansion is an inevitable consequence of heating and care must be exercised to ensure that any differential expansion or restrained expansion does not create hazardous situations or potential damage to the component being heat-treated.
PRECAUTIONS WITH VARIOUS MATERIALS

13.1 Introduction

In addition to the various hazards associated with each welding process, problems can arise with a variety of materials during welding or flame cutting if suitable precautions are not taken.

Table 13.1 cross references the normal precautions required to avoid hazards that may arise from welding or cutting on particular materials or through the use of particular consumables.

Table 13.1 Precautions Required with Certain Materials and Processes

<table>
<thead>
<tr>
<th>Material</th>
<th>Contaminant (Notes 7, 8)</th>
<th>Hazards to be dealt with</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium spray powder and wires</td>
<td>Al</td>
<td>*fume *dust fire & explosion *fume *radiation</td>
<td>see also plastics</td>
</tr>
<tr>
<td>Aluminium and its alloys</td>
<td>Al (Mg, Mn, Cr) ozone</td>
<td>*fume *radiation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Al (Mg, Mn, Cr, Be) ozone</td>
<td>*fume *radiation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu Al</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic (hydrogen controlled) manual electrodes and flux-cored wires</td>
<td>fluorides</td>
<td>*fume</td>
<td></td>
</tr>
<tr>
<td>Blasting Residue</td>
<td>iron, copper oxides, Silica</td>
<td>*dust fire & explosion</td>
<td>(Note 1)</td>
</tr>
<tr>
<td>Brass and Bronze</td>
<td>Cu, Zn, (Sn) Mn, Ni, Pb</td>
<td>*fume</td>
<td></td>
</tr>
<tr>
<td>Brazing baths – see Heat Treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazing fillers</td>
<td>Cu, Ag, Zn, Ni (Sn)</td>
<td>*fume 9.2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cd, (Cu, Ag, Zn, Ni)</td>
<td>*fume 9.2.2</td>
<td></td>
</tr>
<tr>
<td>Brazing fluxes</td>
<td>fluorides</td>
<td>*fume 9.2.1</td>
<td></td>
</tr>
<tr>
<td>Casting, iron welding electrodes for Nickel or Nickel-iron type Bronze type</td>
<td>Ni</td>
<td>*fume</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu, Zn (Al)</td>
<td>*fume</td>
<td></td>
</tr>
<tr>
<td>Coatings, metal, on steel etc.</td>
<td>Zn, Pb, Cr, Cd, Ni, Cu, Sn</td>
<td>*fume</td>
<td>See also Metal spray (Note 2)</td>
</tr>
<tr>
<td>Coatings, plastic, on steel etc.</td>
<td>organic fume</td>
<td>fume 17.10</td>
<td>See also Metal Spray</td>
</tr>
<tr>
<td>Copper and its alloys</td>
<td>Cu, Zn, (Sn), Mn, Ni, Pb, Al Be (Cu)</td>
<td>*fume</td>
<td>See also Brass and Bronze</td>
</tr>
<tr>
<td>Material</td>
<td>Contaminant (Notes 7, 8)</td>
<td>Hazards to be dealt with</td>
<td>Remarks</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Degreasing agents, chlorinated hydrocarbons – decomposition products</td>
<td>phosgene</td>
<td>skin irritation – fire – narcosis intoxication and addiction *fume 17.11 and 10.3</td>
<td></td>
</tr>
<tr>
<td>Dissimilar metal joints, welding electrodes for High alloy stainless type Nickel alloy type</td>
<td>Cr, Ni, (Fe) Ni, Cr, (Fe)</td>
<td>*fume *fume</td>
<td>(Note 3)</td>
</tr>
<tr>
<td>Galvanised steel hot zinc dipped, zinc plated Zincalume*</td>
<td>Zn (Fe) Zn (Al, Fe)</td>
<td>*fume *radiation *fume *radiation</td>
<td>See also coatings metal on steel</td>
</tr>
<tr>
<td>Heat treatment/dip brazing molten salt baths molten cyanide salt baths</td>
<td>nitrates, nitrites cyanides barium & alkali</td>
<td>explosion 9.2.3.4 steam explosion as in 9.2.3.4, poisoning 9.2.1, skin disease 9.2.1</td>
<td></td>
</tr>
<tr>
<td>Lead, lead-coated steels, terne plate</td>
<td>Pb Pb oxide</td>
<td>*fume, dusts 9.3.3 *dust fire and explosion</td>
<td></td>
</tr>
<tr>
<td>Magnesium and its alloys plate extrusions and castings dusts</td>
<td>Mg, Zn Mg, Zn</td>
<td>*fume *radiation *dust fire and explosion</td>
<td></td>
</tr>
<tr>
<td>Metal spraying see also surfacing</td>
<td>Al, Zn, Pb, Mo</td>
<td>*fume *dust fire and explosion</td>
<td></td>
</tr>
<tr>
<td>Nickel and its alloys Monel® Incoloy®, Inconel® Hastelloy®</td>
<td>Ni, Cu Ni, Cr, Fe Ni, Cr, Co</td>
<td>*fume *radiation *fume *radiation *fume *radiation</td>
<td></td>
</tr>
<tr>
<td>Paint coatings on steel etc. Weld-through primers - Zinc silicate type Epoxy type</td>
<td>Zn, Cd</td>
<td>*fume *radiation see plastics</td>
<td></td>
</tr>
<tr>
<td>Other metals in paint Aluminium flake Zinc Chromate Red lead see also Plastics</td>
<td>Al Zn, Cr Pb</td>
<td>*fume *radiation *fume *fume</td>
<td></td>
</tr>
<tr>
<td>Other paints – see Plastics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plastics, decompose on excessive heating</td>
<td>organic fume filler materials</td>
<td>fume 17.10..1, 10.3.1.4 fire and explosion 21.3.2</td>
<td></td>
</tr>
<tr>
<td>Plated steel etc. Zinc – see Galvanised steel Cadmium Chromium</td>
<td>Cd Cr, Cu, Ni</td>
<td>*fume 9.2.2 *radiation *fume *radiation</td>
<td>(Notes 2, 4)</td>
</tr>
<tr>
<td>Solder cadmium-base tin-lead</td>
<td>Cd Pb</td>
<td>fume 9.3.3 fume 9.3.3</td>
<td></td>
</tr>
<tr>
<td>Soldering flux safety stainless steel active</td>
<td>colophony phosphoric acid zinc chloride</td>
<td>fume 9.3.1. Fire 9.3.4 fume 9.3.1 fume, skin irritation 9.3.1</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>Contaminant (Notes 7, 8)</td>
<td>Hazards to be dealt with</td>
<td>Remarks</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Steel types</td>
<td>Fe</td>
<td>*fume</td>
<td></td>
</tr>
<tr>
<td>all austenitic manganese wear-resistant</td>
<td>Mn</td>
<td>*fume</td>
<td></td>
</tr>
<tr>
<td>cryogenic steels (9% Ni)</td>
<td>Ni</td>
<td>*fume</td>
<td></td>
</tr>
<tr>
<td>leaded steels</td>
<td>Pb</td>
<td>*fume</td>
<td></td>
</tr>
<tr>
<td>maraging steels</td>
<td>Ni, Co</td>
<td>*fume *dust fire and explosion</td>
<td></td>
</tr>
<tr>
<td>stainless steels – 400 series</td>
<td>Cr, Mo</td>
<td>*fume *radiation</td>
<td></td>
</tr>
<tr>
<td>stainless steels – other</td>
<td>Cr, Ni, Mo</td>
<td>*fume *radiation</td>
<td></td>
</tr>
<tr>
<td>tool steels (> 5% Cr)</td>
<td>Cr, W, V</td>
<td>*fume</td>
<td>(Note 5)</td>
</tr>
<tr>
<td>Surface contaminants</td>
<td>organic fume etc.</td>
<td>fume 17.11 fire & explosion</td>
<td>21.3.2</td>
</tr>
<tr>
<td>Surface treatments</td>
<td>products of decomposition</td>
<td>fume, 10.3.1.2</td>
<td></td>
</tr>
<tr>
<td>acid (pickling, paste) solutions</td>
<td>- methylene chloride</td>
<td>*fume, skin irritation 9.6</td>
<td></td>
</tr>
<tr>
<td>caustic solutions</td>
<td>- phosgene</td>
<td>fume 17.10..1, 10.3.1.4</td>
<td></td>
</tr>
<tr>
<td>paint remover</td>
<td>see also Degreasing</td>
<td>skin disease 17.11</td>
<td></td>
</tr>
<tr>
<td>see also Blasting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surfacing (hardfacing) consumables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WTIA Group (Technical Note 4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Steels</td>
<td>Fe, Mn, Cr, Ni</td>
<td>*fume</td>
<td>(Notes 5, 6)</td>
</tr>
<tr>
<td>2 Chromium carbide irons</td>
<td>Cr, Co, W, Mo</td>
<td>*fume</td>
<td>(Note 7)</td>
</tr>
<tr>
<td>3 Tungsten carbide composites</td>
<td>Co, Cr etc.</td>
<td>*fume</td>
<td></td>
</tr>
<tr>
<td>4 Cobalt alloys (Stellite)</td>
<td>Ni, Cr, Cu etc.</td>
<td>*fume</td>
<td></td>
</tr>
<tr>
<td>5 Nickel alloys</td>
<td>Cu, Ni etc.</td>
<td>*fume</td>
<td></td>
</tr>
<tr>
<td>6 Copper alloys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium plate and sheet</td>
<td></td>
<td>*radiation</td>
<td></td>
</tr>
</tbody>
</table>

* Key to frequently referenced hazards:
 * fume: see ventilation in Table 17.1 and Appendix 8
 * radiation: open arc welding on bright metal – Chapter 15
 * dust fire and explosion: 11.4, 16.3, Table 16.1

NOTES:
1. Oxides such as scale or corrosion removed by shot, wire or grit blast cleaning of metals.
 Non-volatile chromium, nickel and copper in or on metals being welded contribute very little fume relative to: Volatile cadmium, zinc or lead coatings – Any metals in a consumable electrode – Organic coatings on metals being welded. See Section 17.10.
2. Joints between some steels or between steel and nickel alloy or cast iron.
3. See Section 17.10.2
5. Manganese (Mn) compounds in welding fume are currently limited to 1 mg/ m³ breathing air. In the USA and UK measures to reduce the exposure standards to manganese compounds are under consideration. It is strongly recommended that respiratory protection be used to minimise the exposure to manganese bearing fumes.
6. Spray powders and wires, covered electrodes, solid and tubular wires.
7. Precautions depend on the matrix composition.
8. Precautions appropriate to the main contaminant given are adequate for bracketed elements also.
9. Meanings of chemical symbols are listed in Appendix D.
14.1 Introduction

Although electric arc welding and other operations using electric power can be performed perfectly safely, there are circumstances when there is a substantial risk of electric shock. Precautions against this risk include use of properly maintained and appropriate equipment, correct protective equipment and sound work practices. The severity of electric shock depends on many factors. The consequence may only be an unpleasant experience, but electric shock may also lead to muscular spasms causing a fall from a height or striking injury; and in a few circumstances, death by electrocution. Fatalities have occurred during electric arc welding, even when the equipment is sound and the victim was of good health. These notes and those in Section 4.9.4 describe precautions necessary to avoid electric shock. Details of personal protective equipment are given in Chapter 19. For further information, refer to Australian Standard AS 1674.2 and WTIA Technical Note 22 Welding electrical safety.

Before switching on the welding power source, the electrode holder, welding cables, and the welding power source itself should be inspected for signs of damaged insulation or conductive contaminants such as water and metallic particles that may bridge the insulation. If any faults are found they should be repaired or replaced by a qualified person. Welding cables must not be rolled out to the workpiece with the welding power source switched on.

14.2 Factors Affecting Severity of Electric Shock

Australian Standard AS/NZS 60479 describes the effect of current on the human beings and livestock. The severity of an electric shock depends primarily on the magnitude of the voltage applied, the level and type of current (alternating or direct) and the resistance of the body and any insulation. The risk of electrocution is dependent on a number of factors, including the current path, the touch voltage, the duration of the current flow, the frequency, the degree of moisture on the skin, the surface area of contact, the pressure exerted and the temperature. The electrical resistance of the human body varies typically from 650 to 6500 Ohms, which means that electrical outputs from welding power sources can cause potentially hazardous or fatal electric shock. Other resistances in the electric arc-welding circuit, such as insulation and protective clothing are required to reduce the risk and severity of electric shock.

With welding power sources (as used for MMAW and GTAW) the OCV (40 to 113 volts) available when the welding power source is switched on is considerably higher than the arc voltage (10 to 35 volts) when the welding power source is welding. It is this open circuit voltage (OCV) that provides the most risk of an electric shock, and which can kill (electrocution) in adverse circumstances. Electric shock is less likely to occur while the arc is operating as the resistance of welding circuit, including the arc, is relatively low, 0.025 to 0.25 Ohms and the voltage is also much lower than the OCV. Electrical currents as low as 30 milliamps a.c. or 100 milliamps d.c. can provide a fatal electric shock. The most common outcome from a severe electric shock is a condition known as ventricular fibrillation, which is a form of heart failure. Ventricular fibrillation results in the heart ineffectively pumping blood resulting in brain injury then death within a few minutes. Prompt resuscitation as detailed in Reference 13 may save the victim.

14.3 Electricity Supply to the Welding Power Source and Ancillary Equipment

It is generally well understood that the voltage on the input or primary side of the welding power source is dangerous. The welder must not tamper with the electricity supply for switching, plugging or unplugging the welding power source. Only a competent electrician with knowledge of welding power sources should perform repairs and maintenance to the electrical components of a welding power source. If a number of a.c. MMAW welding power sources are to be connected to the same workpiece, ensure a competent electrician is requested to connect all welding power sources to the same phase pair and with the same phasing. This will ensure there is no voltage between ad-
Table 14.1 Typical Open Circuit Voltage for Various Processes

<table>
<thead>
<tr>
<th>Electric Welding Process</th>
<th>Relative Hazard</th>
<th>Open Circuit Voltages</th>
<th>Power Type</th>
<th>Refer Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance</td>
<td>Negligible</td>
<td>4-12</td>
<td>a.c. & d.c.</td>
<td>7</td>
</tr>
<tr>
<td>MMAW</td>
<td>Medium</td>
<td>50-100*</td>
<td>a.c. & d.c.</td>
<td>4</td>
</tr>
<tr>
<td>GTAW (TIG)</td>
<td>Medium</td>
<td>50-100*</td>
<td>a.c. & d.c.</td>
<td>4</td>
</tr>
<tr>
<td>GMAW (MIG/MAG)</td>
<td>Low</td>
<td>15-60</td>
<td>d.c.</td>
<td>4</td>
</tr>
<tr>
<td>FCAW Low</td>
<td>Low</td>
<td>20-60</td>
<td>d.c.</td>
<td>4</td>
</tr>
<tr>
<td>Submerged Arc</td>
<td>Low</td>
<td>25-100</td>
<td>a.c. & d.c.</td>
<td>4</td>
</tr>
<tr>
<td>Electroslag</td>
<td>Low</td>
<td>30-100</td>
<td>a.c. & d.c.</td>
<td>8</td>
</tr>
<tr>
<td>Underwater</td>
<td>Very High</td>
<td>50-80</td>
<td>a.c. & d.c.</td>
<td>26</td>
</tr>
<tr>
<td>Air Carbon Arc</td>
<td>Medium</td>
<td>50-80</td>
<td>a.c. & d.c.</td>
<td>4</td>
</tr>
<tr>
<td>Plasma Arc Cutting</td>
<td>High</td>
<td>100-700</td>
<td>d.c.</td>
<td>6</td>
</tr>
<tr>
<td>Electron Beam</td>
<td>Very High</td>
<td>30,000-200,000</td>
<td>d.c.</td>
<td>8</td>
</tr>
<tr>
<td>Laser</td>
<td>High</td>
<td>1,000-40,000</td>
<td>d.c.</td>
<td>8 & 15</td>
</tr>
<tr>
<td>Arc Metal Spray</td>
<td>High</td>
<td>40-100</td>
<td>d.c.</td>
<td>11</td>
</tr>
</tbody>
</table>

* maximum for a.c. = 80 volts (See Chapter 14)

An adjacent electrode holders. Care must be taken in positioning supply cables to welding plant and ancillary equipment where there is a risk of damage.

Electrocution has occurred when a power supply cable rested on an overheated terminal of a power source. The power supply cable insulation melted allowing full mains voltage to contact the work terminal.

14.4 Risk of Shock and Choice of Welding Process

It is generally less well understood that there is also a significant risk of electrocution from the output or secondary side of the welding power source. The risk is dependent on the welding process and the type of welding power source used. In most cases, a process using d.c. is considerably safer than one using a.c., because the threshold current (voltage ÷ impedance) for ventricular fibrillation is 2 to 3 times greater with d.c. than a.c. The threshold for ventricular fibrillation for sinusoidal a.c. (15-100 Hz) is taken to be 40 mA for exposures greater than 3 seconds. (Refer to AS 60479.1 – 2010, Clause 5.5)

Another effect is that a.c. causes muscle spasms, perhaps causing the hand to grip onto the source of the electric shock rather than release it. The threshold of let-go for a.c. current is taken to be 10 mA for adult males and 5 mA for the entire population45, whereas there is no definable threshold of let-go for d.c. current46.

It is important to consider the possibility of changes to the environment or the welders’ condition as work progresses. If an environment is classified as Category A or Category B, the environmental conditions must be maintained to ensure there is not a drift towards a lower category and a higher potential risk to personnel. For this reason many industrial workplaces are deemed to be Category C at all times to ensure appropriate equipment, personnel and practices are used. See also Section 4.4.3 and Table 4.2.

14.4.1 Resistance Welding

Little hazard. Voltages are 4 to 12 V a.c. and d.c. See Chapter 7.

14.4.2 Manual Metal Arc Welding (MMAW) and Carbon Air-Arc Gouging (CAG)

Most electrocutions have occurred with the MMAW process. The Open Circuit Voltage is usually 40 to 113 volts d.c. or 40 to 80 volts r.m.s. a.c. with these welding powersources, unless fitted with a hazard-reducing device (HRD). The main risk occurs when changing electrodes, because the electrode is exposed and electrically live whilst in the electrode holder, if the circuit is not isolated.

Isolation can mean either:

(a) Switching off the welding power source, or
(b) Using an isolation switch, such as an output circuit safety switch as per AS 1674.2 – 2007, or
(c) A hand-piece switch

14.4.3 Gas Tungsten Arc Welding (GTAW)

GTAW has similar OCVs to MMAW, both for a.c. and d.c. modes. The welding power source power should be turned off while changing tungsten electrodes. The arc should be struck on the workpiece before placing the tip of the filler-wire in the weld zone; otherwise it is possible to strike against the filler wire. The use of high frequency with GTAW adds another hazard. Although the voltages of
the high frequency are very high (2000 to 10000 volts @ > 50 kHz), their hazard is relatively low. This is because the response of the human body to these relatively high frequencies. There is reduced risk of ventricular fibrillation because high frequencies track along the skin rather than penetrating the body. The duration of HF pulses is very short. HF may, however, damage sensitive electronic devices, such as multimeters, heart pacemakers and hearing aids.

14.4.4 Gas Metal Arc Welding (GMAW) and Flux Cored Arc Welding (FCAW)

These processes have a lower risk of electrocution because OCVs are lower, only d.c. is used, and the power source output is switched at the torch. On some equipment the OCVs can be as high as 70 V d.c., although OCVs are usually less than 50 V d.c. workplace.

14.4.5 Submerged Arc Welding (SAW) and Electroslag Welding (ESW)

SAW and ESW processes both have a low risk of electrocution because the welder is remote from the nozzle. It is important, however, to turn off the power source while changing the electrode wire or assembling or disassembling the equipment.

14.4.6 Plasma Arc Welding (PAW) and Plasma Cutting

The voltage necessary to create a plasma is of the order of 100 to 700 volts. The risk of electrocution is high only if equipment is disassembled with the power on or if it is damaged. It is important to follow practices outlined in Chapter 6 and the manufacturer’s instructions.

14.5 Avoiding the Risk of Electrocution in Manual Welding

The work practices that must be followed to prevent a welder being exposed to the electrical hazard of the secondary circuit involve a combination of four strategies:

(a) Avoiding contact with the electrode
(b) Avoiding contact with the workpiece
(c) Avoiding contact through damaged equipment or poor work practices, and
(d) Eliminating or limiting the OCV

14.5.1 Preventing Contact with the Electrode

The most fundamental safety requirement is for the welder to avoid bare skin contact with the electrode or live parts of the electrode holder or gun. The electrode is an electrical conductor. During manual metal arc welding, dry welding gloves are required for handling the electrode holder, when inserting a new electrode or to steady its tip during welding. Bare hands, damp or defective gloves should not be used. The electrode holder for manual metal arc welding should preferably be of AS 60974.11 Class A standard. Class B is only justified if large diameter electrodes beyond the capacity of a Class A electrode holder.

Partly used electrodes or stubs of electrodes should never be left in an electrode holder.

14.5.2 Preventing Contact with the Workpiece

Preventing contact with the electrode is regarded as insufficient to guarantee safety. There have been incidents of electrocution reported where there has been accidental contact between the electrode and the face, neck or arm pit. Some other precaution is essential; ideally insulation from the workpiece.

All parts of the workpiece have to be regarded as electrically live, and live areas can surround the welder. Use leather or fibre mats or cushions and wooden duckboards to prevent direct contact with the work, or any damp surfaces that may be electrically connected to the work. Appropriate clothing that provides good coverage insulates the welder from the workpiece provided it is dry. The weaknesses of relying on clothing for insulation are that overalls, leather jackets and denim jeans are often fastened with brass studs, get worn and holed during use, may not provide complete coverage and get damp with perspiration. See Section 4.4.3.

All parts of the body should be covered. Dry overalls or shirt and trousers, insulated boots, welding gloves and welding screen are a minimum requirement. Leather jackets, leggings or kneepads worn as protection from heat from the job, also provide good electric shock protection. When working at a bench, stand on a wooden duckboard. When effective insulation cannot be guaranteed the precautions given in 14.6 should be applied.

AS 1674.2 specifies three categories of environments for welding.

To be classified as Category A, the probability of contacting the workpiece is very low and the maximum allowable welding power source OCV is higher. See Table 14.2.

For Category B and Category C environments, where the probability of contact with the workpiece is much higher, the specified maximum allowable OCVs for a.c. and d.c. current types are lower.

An observer is required if the higher OCVs are used in Category B environments, otherwise the lower values apply.

An observer and lower OCV are always required in a Category C environment.

14.5.3 Avoiding Contact Through Damaged Equipment or Poor Work Practices

The diligence of daily and pre-start inspections, using safe work practices, equipment maintenance by competent

47. It is important to consider the possibility of changes to the environment or the welders’ condition as work progresses. If an environment is classified as Category A or Category B, the environmental conditions must be maintained to ensure there is not a drift towards a lower category and a higher potential risk to personnel. For this reason many industrial workplaces are deemed to be Category C at all times to ensure appropriate equipment, personnel and practices are used.
persons and awareness of electrical hazards by welders or other personnel in the vicinity are key factors in prevention of electric shock.

14.5.4 Hazard-Reducing Devices

HRDs are used to limit or eliminate the OCV from the welding output circuit or secondary circuit of the welding equipment.

The use of HRDs such as hand-piece trigger switches and voltage-reducing devices (VRDs) can greatly reduce the exposure of personnel to a hazardous OCV from a welding power source.

14.5.4.1 Voltage Reducing Devices

VRDs are safety enhancements that reduce the potentially hazardous voltages produced by a welding power source. The function of a VRD is to reduce the OCV to a safer, lower level when welding ceases. A VRD or system should automatically reduce the no-load or OCV, to a no-load voltage of:

(a) 35 V for d.c. and
(b) 35 V peak, 25 V r.m.s. for a.c.

or less when the resistance of the output circuit exceeds 200 Ohms. Response time for reaching the reduced voltage shall be 0.3 seconds.

VRDs have the following features:

(a) When no welding is taking place and the output circuit resistance is high, the voltage is limited. Commercial VRDs reduce the OCV to values ranging from around 12 V, up to the maximum allowable 48
(b) When the electrode is brought in contact with the work, lowering circuit resistance below about 200 Ohms, the full secondary circuit voltage is applied and allows an arc to establish
(c) Full welding voltage is only present while welding is in progress and this significantly reduces the window of opportunity or risk of being exposed to a lethal OCV
(d) It is also important to understand the response time of a VRD and ensure that this is minimal (0.3 seconds)
(e) Some VRDs have an intentional delay of some seconds before they reduce the OCV. This is more than enough time for a welder, or other person in contact with the welding circuit, to be electrocuted
(f) When purchasing a VRD, select one designed to fail in a safe manner. Failure must not result in unsafe conditions due to lack of protection
(g) VRDs are a popular option for achieving the low OCV requirement of a wet hazardous environment when using a drooping characteristic power source (a.c. or d.c.). They are recommended for other locations, although some reduction in the ease of striking has been experienced

14.5.4.2 Indication of Satisfactory Operation of VRDs

Each VRD should be provided with a reliable device that indicates that is operating satisfactorily. Where a lamp is used, it should light when the voltage has been reduced.

14.5.4.3 Hand-piece Switches

Another effective control is to use a switch on the hand-piece to isolate power output from the welding power source. Where a hand-piece (trigger) switch is used as a hazard-reducing device:

(a) The voltage of its control circuit shall be not more than d.c. 35 V peak or a.c. 25 V r.m.s.; and,
(b) Its switching mechanism shall:
 (i) Return to the off position, immediately the welder releases pressure on the switch
 (ii) Be easy to hold in the closed position, enabling the welder to carry out normal welding operations, without muscle strain
 (iii) Have a two-stage operation to move to the on position, so that there is a low probability of accidental closure of the switch during any hazardous operations (for example, changing electrodes); and,
 (iv) Automatically latch in the off position, on release of pressure by the welder

Proper functioning of hazard-reducing devices should not be affected by interference from remote controls, arc-striking devices or arc-stabilizing devices of the welding power source (that is, limits for no-load voltage shall not be exceeded).

14.6 Assessing the Risk of Electric Shock

Before welding commences, the work area should be assessed and the welding environment classified for risk of electric shock in accordance with AS 1674.2 Clause 1.3.6.

14.6.1 Category A Environment

14.6.1.1 Definition

Category A Environment (Normal Environment in former editions) is an environment where there is a low risk of coming in contact with part of the welding circuit as described in AS 1674.2. Category A is an environment where:

(a) The risk of an electric shock or electrocution by arc welding is low
(b) Normal work practice is used; and
(c) It is not possible for the welder or any other worker to be in contact with the workpiece, in the event of being in contact with a live part of the welding circuit

14.6.1.2 Classification

In Category A environments, considerable effort is required to insulate the welder and others from the workpiece, such as bench-top welding where the workpiece is small and there is a low risk of the welder becoming part of

48. It is worth noting that the no-load voltages of some welding power sources fitted with VRDs are near the upper limits allowable by AS 1674.2 – 2007
the circuit; or where both the welder and any assistants are prevented from being in contact with conductive parts. For repetitive operations, such an environment is usually limited to carefully designed workstations, as well as welder training and welding procedure qualification test bays.

14.6.1.3 Control Measures

For welding in Category A environments (defined by AS 1674.2 Clause 1.3.6.1), AS 1674.2 Clause 2.2(a) and the following apply:

(a) The electrode and workpiece shall be regarded as electrically live.
(b) Welding gloves shall be sound, dry and used on both hands while welding or changing electrodes.
(c) Welders should wear appropriate dry fireproof clothing that covers the legs and arms, and footwear should be rubber soled and not have bare steel toe caps.
(d) Leather cushions, wooden duckboards or other means shall be used to insulate the welder from damp concrete floors and any exposed parts of the workpiece.
(e) Leads and equipment shall be inspected for damage. Damaged equipment and leads shall not be used, but removed from service for repair or discarded.
(f) While tacking two pieces together, the arc shall be struck on the piece connected to the return cable.
(g) The work area shall be kept tidy and free from tangled leads, discarded cut-offs and electrode stubs.
(h) The electrode holder or gun shall not be placed on the workpiece, where it may short circuit.
(i) The power shall be turned off and MMAW electrodes and stub ends removed from the electrode holder, before the welder leaves the work area and whenever the leads have to be moved.

49. AS 60974.1 and AS 60974.6 classify a Category A environment as ‘an environment without increased hazard of electric shock’.

50. The welder should take care to avoid contact with them.

51. A system of tagging for defective equipment is recommended.

52. Trying to tack weld on an unconnected piece will expose any person holding a conductive piece not connected to the return cable to the risk of electric shock. An alternative approach is to use a split return cable fitted with two return clamps and attach a return clamp to each piece.

53. An insulated container should be provided.

54. Further detailed advice may be obtained from WTIA Technical Note 22.

55. AS 60974.1 and AS 60974.6 classify Category B environments as ‘environment with increased hazard of electric shock’.

56. When the weather is hot, high preheat temperature is employed or when the vessel is exposed to the sun, many Category B environments become Category C environments.

57. Insulating cushions, sheets, blankets, duckboards and other suitable protection should be used to insulate the welder, if practical.

58. Power sources complying with AS 60974.1 should have been marked with the letter S in a square on the compliance plate, to indicate its safety in such an environment (See Table 3.2.2). Many a.c. MMAW power sources, particularly older welding power sources, do not meet this requirement and should not be used in a Category B environment.

59. The use of a HRD may be required.

60. These control measures should be included in the hot-work permit described in AS 1674.1.

61. Further detailed advice may be obtained from WTIA Technical Note 22.

14.6.2 Category B Environment

14.6.2.1 Definition

Category B Environment (Hazardous Environment in former editions) is an environment where there is a significant risk of the welder contacting the workpiece or other parts of the welding circuit.

Such an environment may be found where the ambient temperature is less than 32°C and:

(a) Freedom from movement is restricted, so that an operator is forced to perform welding in a cramped position (e.g., kneeling, sitting, lying), with physical contact with conductive parts (e.g., the workpiece); or

(b) There is a high risk of accidental or unavoidable contact by the operator with conductive elements, which may or may not be in a confined space as defined in AS 2865.

14.6.2.2 Classification

Category B environments (See AS 1674.2 Clause 1.3.6.2) include general fabrication activities, large workpieces, steel building structures, inside pressure vessels, processing tanks, storage tanks, conductive confined spaces and on-board ships.

14.6.2.3 Control Measures

While welding in Category B environments (See AS 1674.2 Clause 1.3.6.2), AS 1674.2 Clauses 2.2(b) and 2.3.1 and the following apply:

(a) Where practicable, care shall be taken to convert to a Category A environment.

(b) The open-circuit voltage in a Category B environment shall not exceed 113 V d.c. peak or 68 V a.c. peak and 48 V a.c. r.m.s. The open circuit voltage shall be measured, to ensure it is within the specified limits. If necessary, the power source shall be fitted with a hazard-reduction device complying with Clause 3.2.7, in order to comply with this requirement.

(c) Whenever the welder works without an observer, the open circuit voltage shall not exceed 35 V d.c. peak or 35 V a.c. peak and 25 V a.c. r.m.s. (i.e., the same as in Item 2.3.3(e) for a Category C environment).

(d) Where the environment is a confined space, the provisions of AS 2865 shall also apply, which specifies requirements for access to the space, egress from the space in an emergency, avoiding asphyxiation and avoiding entanglement or entrapment. Where access to the space is restricted, an observer, as described in Clause 1.3.14, shall be required.

In this case, the welder only has to touch the electrode accidentally to get a shock. This can occur by stroking the face with a live electrode, dropping it, or placing it under the armpit. Much work in a workshop can be conducted in a non-hazardous workspace, but if the workpiece is large, or is sitting on a steel plate on the floor, the workspace should be regarded as potentially electrically hazardous. The workspace is not hazardous if insulating material can be used to prevent contact with the workpiece.
Standing in rubber-soled shoes is not hazardous, but if work is performed while sitting, kneeling or lying on the workpiece it may become hazardous. The hazard can be minimised by lying on leather-covered cushions, wooden duckboards, or similar insulation. It is not sound practice to rely on normal work clothing for insulation, because it is easily holed or moistened with sweat, and may have metal button or zip closures.

If the workspace is a small space closely confined by conducting elements, then insulation from contact is almost impossible. Such a workplace could be inside a pipe or small vessel. The hazardous environment may or may not be a confined space as defined by AS 2865. A confined space without an electrically conducting boundary is not electrically hazardous. A room with electrically conductive walls, such as ship’s engine room is not a confined space (it is a normal place of work), but it may be electrically hazardous. If it is a confined space then the precautions specified in AS 2865 are mandatory to prevent asphyxiation, entanglement with machinery, entrapment or engulfment. Refer to Table 14.2.

Examples of such environments include:
(a) Underwater
(b) In the splash zone close to the water’s edge
(c) While standing in water
(d) In rain
(e) Welding in a hot or humid area when it is impossible to avoid accumulation of perspiration or condensation
(f) In confined spaces

If MMAW and allied processes have to be performed in these hazardous environments, a HRD is recommended. These devices are designed to eliminate OCV or reduce the OCV to less than 25 volts if the circuit resistance exceeds 200 ohms. A lower capital cost solution is to use a contactor switch that is operated by the welder or observer. Such a switch should be arranged so that the welding current is cut off except when striking the arc and welding. An observer is necessary to operate the contactor switch in confined spaces.

If the workspace is electrically hazardous, the following additional precautions apply:
(a) If possible, the area must be made non-hazardous by using insulation, in which case it can be treated as a normal environment
(b) Before welding, an emergency response plan should be written to cover the eventuality the welder suffers a serious shock and has to be extricated and resuscitated, or indeed for any other risk
(c) The welder must not work alone. Someone in the area must be given the task of observing all welders, even if normal duties are acting as a trade’s assistant, passing electrodes or tools to the welders as required. The observer must be trained in emergency procedures, particularly how to disconnect the power and obtain help. They should probably carry a radio or mobile telephone to be able to call for assistance
(d) There must be some means of breaking the circuit close to the observer. This should be either a twist lock in the electrode cable or the return cable clamp that can be removed
(e) A person trained in resuscitation must be available at the work site
(f) The maximum permitted OCV of the power source is 113 V d.c. or 48 V a.c.. Power sources that comply with this requirement are often marked with an S in a square box on the compliance plate, and sometimes on the front panel. d.c. only welding power sources will all comply with the requirements, but most a.c. welding power sources will not

14.6.3 Category C Environment (Was Environment with a high risk of electrocution)

14.6.3.1 Definition

Category C Environment (Environment with a high risk of electrocution in former editions of the Standard) is an environment where the risk of an electric shock or electrocution by arc welding is greatly increased due to low body impedance of the welder and a significant risk of the welder contacting the workpiece or other parts of the welding circuit.

14.6.3.2 Classification

Category C environments include, but are not limited to, coffer dams, trenches, underground mines, in rain, partially submerged areas, splash zones (See also Appendix B).

14.6.3.3 Control Measures

For welding in Category C environments (defined by AS 1674.2 Clause 1.3.6.3), AS 1674.2 Clauses 2.2(c) and 2.3.2 the following apply:
(a) Where it is determined that the welder or welding equipment can become wet from rain, splashing, partial submersion or other external sources, then adequate control measures shall be implemented before welding commences
(b) Every effort shall be made to make the environment as cool as possible to minimize perspiration
(c) An observer shall be appointed to monitor the welder. The observer or a third person working close by shall be trained in rescue and emergency procedures. The observer may monitor more than one welder, provided that the welders being monitored can be observed at the same time

62. It has been shown in a recent investigation of an electrocution that very low moisture levels, of the order of 3%, were sufficient to reduce the insulation properties of industrial clothing to a point where dangerous currents could pass at welding voltages.

63. Low body impedance is likely in the presence of water, moisture or heat, particularly where the ambient temperature is above 32°C. In wet, moist or hot locations, humidity or perspiration considerably reduces the skin resistance of human bodies and the insulating properties of personal protective equipment accessories and clothing.

64. It may be possible to derate Category B and Category C environments, where effective control measures are taken to eliminate or reduce the risk (e.g. air conditioning, special insulating clothing)
The use of covers to protect from water exposure (e.g. rain or a dripping roof), air-conditioning and frequent changes of clothing (particularly cotton glove liners) should minimise the risk.

2. Most equipment for GMAW, FCAW and GTAW complies with this requirement, because the current is switched with a trigger switch.

3. For MMAW or similar processes, such as carbon air-arc gouging, the power source may require an additional hazard-reducing device.

4. Further detailed advice may be obtained from WTIA Technical Note 22.

In these situations, the water or perspiration makes insulation of the welder from the workpiece extremely difficult. There are often large contact areas between the welder’s skin and the workpiece and the skin resistance is low. In addition perspiration, dampened gloves make the risk of contact with the electrode high. The risk of a shock is high and the consequences of one are likely to be serious.

The precautions above are even more important, but the following additional ones also apply:

(a) Where possible, every effort should be made to make the environment safer. The use of covers to protect from rain, air conditioning in a hot confined space, or frequent changes of damp clothing (particularly gloves) is encouraged. The frequent changing of cotton liners avoids gloves becoming saturated with perspiration. It may be possible to avoid this situation altogether.

(b) An assistant must closely observe the welder at all times. The assistant must be trained in emergency response, particularly how to isolate the current and call for assistance.

(c) Equipment maintenance must not be undertaken in this environment.

The maximum permitted voltage when an arc is not present is 25 V a.c. or 35 V d.c. Plasma processes should not be used in this environment. To comply with the low OCV, some hazard protection device is required for the MMAW, carbon air-arc gouging and GTAW processes. This can be a switch, such as a trigger switch or remote control transmitter, on the hand piece operated by the welder. GMAW and most GTAW are conducted with such a switch, and it is possible to use a switch on MMAW or air-arc gouging torches. Where a switching device is used, the device should meet the following requirements:

(a) The voltage of the control circuit or remote control device should not exceed 35 V d.c. or 25 V a.c. r.m.s. and

(b) The switching system should:

(i) Return the output circuit of the welding power source to the OFF position, immediately the welder releases pressure on the switch or for auto latching types, when the arc is broken.

(ii) Be easy to hold in position, enabling the welder to carry out normal welding operations. Some devices auto latch when there is a welding current present and do not require constant pressure on the switch.

(iii) For MMAW and carbon air-arc gouging have a two-stage operation to move to the ON position, so that there is a low probability of accidental activation of the secondary circuit during any hazardous operations (for example, changing electrodes).

(iv) Automatically latch in the OFF position, on release of pressure by the welder.

An alternative solution for MMAW is to use a VRD, but this may not be an option with carbon air-arc gouging because of the intermittent nature of the arc in that process.

GMAW and FCAW welding power sources comply with the restriction on maximum OCV because they are
switched and they operate with low OCV d.c. There is no benefit in fitting VRDs to these welding power sources.

14.7 Hazard Reducing Devices and In-line switches

If MMAW and allied processes have to be performed in electrically hazardous environments, a HRD is recommended. The function of a HRD is, when not welding, to eliminate the OCV or reduce the OCV to a safe level. If a VRD is used the maximum OCV is 25 V r.m.s. for a.c. or 35 V ripple free for d.c. output welding power sources. In the case of a VRD, when the electrode is brought in contact with the job, lowering the circuit resistance below 200 ohm, the full secondary voltage is applied allowing the arc to establish.

It is important that operators are trained in the function of a VRD and are aware of the indications that the VRD is working correctly. If the VRD fails to operate correctly then the welding power source should be designed to reduce the open circuit voltage to less than 25 V a.c or 35 V d.c. i.e. fail-to-safe.

In the case of a handpiece switch type HRD, the full open circuit voltage of the power source is applied, for a maximum period of two seconds, to enable striking of the electrode and initiation of an arc. On breaking the arc, the output voltage is reduced to zero within 300 milliseconds.

It must be emphasised that HRDs do not protect the welder and others in the vicinity of welding in all situations, but they significantly reduce the risk of electric shock and electrocution by:

(a) Reducing the periods that full OCV is present, and
(b) Limiting the time that full OCV is applied both before and after a welding arc is established.

A lower capital cost but less satisfactory solution is to use a contactor switch that is operated by the welder or observer. Such a switch should be arranged so that the welding current is cut off except when striking the arc for welding. An observer is necessary to operate the contactor switch (AS 1674.2 “output circuit safety switch”) in confined spaces. This method is, however, subject to human error, discipline and response times (a person can be electrocuted in less than 1 second).

14.8 Multiple Welding Power Sources

Dangerous voltages may occur between electrode holders if two or more welding power sources are connected to the same workpiece. This can happen with d.c. welding power sources if one welding power source is connected Direct Current Electrode Negative (DCEN) and the other Direct Current Electrode Positive (DCEP). In this case a voltage of twice the OCV (up to 226 volts d.c.) may occur between the two electrode holders.

A more dangerous situation can also occur if two a.c. welding power sources are connected to different phases of the mains, or with their connections opposed. In this case the voltage between the two electrodes is either 1.73 or 2 times that of the individual welding power sources (up to 160 volts a.c.).

(a) Ensure that the terminal on each welding power source marked “Electrode” is connected to the electrode and not the work piece, and vice versa
(b) Check the voltage between adjacent electrode holders
(c) Do not site two electrode cables close to one another unless there is no voltage between the holders
(d) Ensure multiple a.c. welding power sources are installed by a competent electrician and connected in phase

Refer to AS 1674.2 Section 4.4 Connecting multiple power sources to a common workpiece.

14.9 Rescue of Victims

Rescue plans should be developed and rehearsed. All persons who work near or assist in, welding operations should be familiar with rescue procedures. Basic actions are:

(a) Act quickly – a few seconds delay in rescue may have serious consequences but take care to avoid becoming another victim
(b) Isolate – always isolate power. It may not be possible to determine if the victim is in contact with the conductor and direct contact with the victim may result in a shock to the rescuer. Switch off the electrical supply and pull out the plug if at all possible. If this is not possible, the rescuer must be adequately insulated. Do not attempt to kick the casualty clear
(c) Rescuer insulation – if the victim cannot be isolated, adequate insulation for the rescuer includes dry rubber gloves, dry cloth or dry timber without metal attachments. Releasing the victim may require the use of great force if the conductor is still live. Special care in releasing the victim is required if working above ground level to prevent a subsequent fall
(d) Confined spaces – extra insulation for rescuers operating in confined space situations is a necessary precaution as the surrounding may be electrically alive
(e) Basic life support – if breathing has stopped or cardiac arrest has occurred, commence resuscitation as quickly as possible. If the casualty is unconscious, treat as if unconsciousness is from any other cause. Send for an ambulance and/or medical assistance urgently. All persons sustaining an electric shock should be medically examined before returning to work
(f) Further precautions – ensure that the circumstances of the accident are investigated and that no person touches any conductor until it is declared safe by a qualified authority

14.10 Additional Guidance

Refer to WTIA Technical Note 22 Welding electrical safety
ARC, FLAME AND LASER RADIATION

15.1 Radiation (Non-Ionising) and its Effects

Three types of non-ionising radiation (NIR) are emitted by electric arcs, plasma arc processes and laser processes, these being ultraviolet, visible and infrared (References 15, 16, 17). The last two types are also emitted from flames in gas welding. Over exposure to each of these types of radiation can cause damage or discomfort to the eyes or skin.

It is important also to note that:
(a) Visible and infrared radiation is emitted from hot-work in flame cutting
(b) All three radiations can be reflected (See Section 15.2)
(c) Radiofrequency radiation is another form of radiation associated with GTAW. This type of radiation does not require the wearing of special clothing
(d) Increasing distance from a welding arc reduces the intensity as the inverse of the distance squared. Refer to AS/NZS 1336:1997 Table 5.1 Maximum permissible exposure time with no personal protection guidelines. This Table also gives guidelines on the safe distances from welding processes for individuals with no personal protective equipment
(e) Industrial laser beams are usually highly collimated – hence divergence with distance is minimal and safe distances may be in the order of kilometres!

15.1.1 Ultraviolet Radiation (UV)

Brief exposure to this radiation can produce an inflammation to the cornea of the eye and produces a condition commonly known as “arc eye”. The severity of injury depends upon factors such as wavelength, exposure time, radiation intensity, distance from the source and sensitivity of the individual (AS/NZS 1336 Recommended practices for occupational eye protection Section 5.8). Thus in a given occupational situation, some may develop arc eye, others not. The symptoms do not appear until several hours after exposure. Pain, watering of eyes and photophobia (marked intolerance to light) occur. Although severe short-term discomfort occurs, generally there is no permanent damage.

Exposure of bare skin to UV radiation produces an effect similar to severe sunburn.

The use of high SPF sunblock creams is recommended to reduce the adverse effects of UV on exposed skin.

15.1.2 Visible Radiation

Exposure to high intensity visible radiation may result in “dazzle” with temporary loss of vision. The intensity of some visible light generated from laser processes may be sufficiently high to cause more than a temporary effect. The visible light, if sufficiently intense, can cause damage to the retina that may not be temporary. Photo-toxicity may contribute to age related macular (skin) degeneration. The photosensitisation effects of some therapeutic drugs can exacerbate this.

15.1.3 Infra-red Radiation (IR)

The main effect of this radiation on tissues is thermal. Fortunately, because the skin has a pain threshold below that of the burn threshold, harmful effects do not usually occur.

The intensity of radiation depends on the process (e.g. open or submerged arc or gas flame) and the energy released at the arc or flame, e.g. intensity increases with welding current or electrode size or the size of the flame. Exposure close to the arc or flame requires suitable protection. The special precautions necessary with lasers are given in Section 8.2.

It is important also to realise that:
(a) Visible and infrared radiation is emitted from hot-work in flame cutting
(b) All three radiations can be reflected (See Section 15.2)
(c) Radiofrequency radiation is another form of radiation associated with GTAW. This type of radiation does not require the wearing of special clothing
(d) Some industrial lasers operate in the IR wavelength range. These lasers are not visible but have very high energy densities capable of causing severe injury

15.2 Personal Protection

Note: Special precautions are needed in confined areas to prevent exposure to reflected radiation.
Protection is required for both the eyes and skin. Table 19.2 lists suitable filter shades for goggles and face shields. Chapter 19 indicates general protective requirements.

Protection is also required against indirect radiation. Bright rolled aluminium reflects 90% of incident ultraviolet radiation, while stainless steel reflects about 30%. Plastic curtains also have reflective surfaces and increase the indirect ultraviolet radiation for welders and other personnel.

15.3 Protection of Other Personnel

(a) Adequate protection should be provided for all personnel within approximately 10 metres of open arc, plasma arc and laser processes (AS/NZS 1336 Section 5.8 indicates 25 metres with more than 2 hours exposure over an 8 hour working day)

(b) Screens of either a portable or permanent type may be used to screen persons who are required to work within the distance above. These should be non-flammable and permit circulation at floor level and ceiling level. Plastic curtains through which the welding arc may be viewed, by casual passing personnel, with minimal exposure to UV are also available67

(c) Portable screens may be of such plastic, fabric or canvas, and should be of light, robust construction and readily movable to encourage maximum usage

(d) Walls and partitions should have a 'matt' finish and light colours are permissible provided they are based on suitable pigments. Zinc oxide reflects only 3% of incident ultraviolet radiation and titanium dioxide 7%. Both are therefore suitable pigments. White lead (basic carbonate type) is unsuitable as it has a UV reflectance of 62% (Reference 17)

(e) Colours of walls and partitions should contribute towards a good general level of illumination

(f) Site operations require particular attention to the provision of screens especially where welding may be intermittent or in view of the general public. All unauthorised persons including workers and children should be kept away

(g) Intermittent arc flashes can cause distraction and eyestrain.

(h) Special precautions in confined areas to prevent exposure to reflected radiation.

15.4 Screens and Curtains

Screens and curtains should comply with AS/NZS 3957 Light-transmitting screens and curtains for welding operations and be selected in accordance with AS/NZS 1336. See Section 19.5.

15.5 Laser Radiation

Refer WTIA Guidance Note 9 – Laser safety (Reference 51).

67. These screens do not provide sufficient protection for viewing the welding arc and accordingly the correctly shaded viewing lens should be used for this purpose – Refer AS/NZS 1336 sect. 5.8.
16.1 Introduction
Flame cutting and welding operations are a major cause of industrial fires. Each year losses amounting to several million dollars and loss of life or severe injury result from fires. The required precautions depend largely upon the processes being used and location of the work. This chapter provides basic guidance in the prevention of fire and explosion when using arc or flame processes.

Protection against fire and explosion should comply with statutory regulations covering fire prevention (Appendix B) and with AS 1674.1 Safety in welding and allied processes - Fire precautions. See also Chapters 20, 21, 22, 24 and 28.

16.2 Causes of Fire
Fire is a fast chemical reaction that produces heat, light and energy.

For a fire to occur you need four (4) elements:
1. Fuel (solids, liquids or gases)
2. Heat or ignition source
3. Oxygen
4. Chemical reaction

This is called the Fire Tetrahedron as shown in Figure 16.1. Fire is extinguished or prevented by removing one element.

In cutting and welding the elimination of heat is not possible, therefore whilst most strategies are based on minimising the spread of heat, the main focus is on elimination of fuel and/or oxygen. In many situations elimination of fuels is not practical and exclusion of all oxygen is also not practical, so close monitoring and careful management are required to prevent incidents.

The temperature of the arc or flame used in welding or cutting is sufficient to cause combustion of many materials where direct contact is made. There are, however, many less obvious sources of heat and flammable material.

16.2.1 Sparks and Hot Metallic Particles
Flame or arc cutting and gouging processes in particular as well as welding processes generate sparks and particles at high temperature. Such particles can travel quite long distances whilst retaining sufficient heat to cause combustion as illustrated by Figure 16.2. Even if fires do not commence immediately, smouldering of combustible matter leading to fire at a later time may result.
Work area cleanliness and constant vigilance are the best way of ensuring hot particles or sparks cannot lodge in fissures, crevices or any combustible material.

Recognition of the added dangers of working at heights with respect to the location of combustible materials is important (See Figure 16.2) (refer to Section 25.6).

16.2.2 Electrode Stubs
Even if they are not at red heat, hot stubs may cause ignition of wood or paper products.

Electrode stubs should be carefully discarded, preferably in a suitable metal storage bin for this purpose.

16.2.3 Oxygen and Fuel Gases
As has been pointed out earlier, oxygen and fuel gases can add appreciably to the risks of fire and/or explosion unless sensible operating procedures and precautions are adopted.

Avoid gas leakages, improper use of oxygen or fuel gases, unsafe equipment and other practices that increase fire risks (See Chapter 5).

16.2.4 Hose Locations
Pressure hosing for gases may be pierced or cut by sharp objects or burned by sparks, hot slag, hot objects or flame unless care is exercised. Chances of accidental damage will lead to greater risks especially if such damage remains unnoticed.

Carefully choose hose locations so that the chances of accidental damage are minimised. Always allow ready access for checking of hoses and any connections.

16.2.5 Gas Cylinders
Heating of any cylinder by an arc or flame may cause an explosion. In the case of oxygen and fuel gas cylinders, a serious fire may also occur.

Flashback into or heating of an acetylene cylinder can cause a cylinder fire that may result in rupture of the adjacent oxygen cylinder (See Section 5.11).

Never permit heating of a gas cylinder by direct or nearby welding, cutting or any other heat generating sources.

16.2.6 Containers and Piping
Special care is required when welding or cutting on or near containers or piping. The welder may not know the contents and the application of heat may be sufficient to cause ignition or explosion. The use of suitable heat shielding should be considered in such cases.

Work permits may be required. The recommendations of Chapters 21, 22 and/or 24 should be strictly observed.

Aerosol cans are often used in hot-work areas and are generally poorly controlled. Products used in aerosol cans include products such as anti-spatter, paints, dye penetrant and magnetic particle consumables. Stray arcs, hot metal or spatter can cause incidents with aerosol cans.

16.2.7 Partitions and Walls
Fires have been caused by ignition of partitions and walls, by burning through them or by igniting material on the other side. The latter has for example occurred when welding on bulkheads in ships.

Before welding, check partitions, walls and materials that may be present on the other side for flammability.

16.2.8 Electrical Connections
Poor quality or poorly maintained connections or work clamps may cause sparking or overheating and subsequently cause ignition. Attachment of work cables to a structural system, piping etc. may cause such sparking at locations remote from the welding operation.

Ensure all electrical connections are of adequate quality and capacity and select work cable connection points carefully.

16.2.9 Ignition Temperature
Many materials such as wood, wood-based products, paper, synthetic materials, oil and grease soaked materials and some gases such as acetylene have ignition temperatures below about 400°C. Metallic particles, stubs etc. at lower than red heat temperatures can cause fire if they lodge in such materials.

Investigate flammability of materials within range of sparks or spatter (Figure 16.2) as well as in the immediate vicinity of cutting or welding.

16.2.10 Flammable Dusts Causing Fire and Explosion
Metallic and non-metallic dusts may be capable of causing fire or explosions. As these hazards are unusual in most welding locations, they are treated separately in Section 16.3.

16.3 Dust and Fires in Explosions

16.3.1 Hazardous Dusts
All organic and many inorganic materials will burn and propagate flame if they are ground finely enough. Table 16.1 gives details of the explosion characteristics of various dusts that may be present in areas where welding could be carried out.

Section 11.4 provides detailed information in respect of causes of dust fires or explosions in metal spraying applications. Details of appropriate preventative and fire fighting procedures are given below.

16.3.2 Prevention of Dust Explosions or Fires
The two basic means of prevention are:
(a) Prevent formation of explosive mixtures of dust and air or the collection of dusts
(b) Prevent ignition of collected dusts or dust-air mixtures. The following represent the basic features of preventative actions.
16.3.3 Ventilation Ducting

Ducting systems almost always accumulate dust at corners, crevices and the like. A wide variety of dusts in air can explode if the correct conditions for ignition exist.

(a) All ducting for ventilation requires provision of explosion relief panels and fire doors at bends or other location where accumulation can occur

(b) All equipment such as motors, fans and ducting should be earthed to prevent either electrical short circuits or a build-up of static electricity. Totally enclosed fan-cooled motors are recommended

(c) Separate ducting systems are required for ventilation of metal spraying and blasting areas to prevent the mixing of iron oxide and metal powders

16.3.4 Fighting Dust Fires

In the case of dust fires:

(a) Clear combustibles from the surrounding area as quickly and carefully as possible

(b) Do not disturb burning dust as the dust cloud formed may well result in explosion (See Section 11.4.2).

(c) Use a sand dry powder fire extinguisher, or other inert materials to smother dust fires; these are the only suitable means for extinguishing metal dust fires.

In the case of metal dust fires (only):

(i) Do not use water or foam as explosion can result due to rapid generation of hydrogen

In the case of non-metal dust fires (only):

(ii) Foam extinguishers or a fog nozzle or finely divided water streams are more effective than hose type water extinguishers as they are less likely to stir up dust

16.4 Location of Hot-Work

16.4.1 Designated Hot-Work Area

A designated hot-work area should be managed to maintain continuous compliance with the requirements of AS 1674.1. This is typically a part of a workplace where hot-work is routinely undertaken, such as welding bays and fabrication shops and where it is understood that flammable and combustible materials are managed according to standard procedures to manage the risk of fire and explosion.

It is important that designated hot-work areas are routinely inspected and that every effort is made to prevent the introduction of uncontrolled flammable or combustible materials.

16.4.2 Hazardous Areas

A hazardous area is defined in AS 1674.1 as an area in which flammable liquids, vapours or gases, combustible liquids, dusts or fibres, or other flammable or explosive substances may be present.

The location where welding or cutting operations are being carried out is one of the main factors in determining

Table 16.1 Explosion Characteristics of Various Dusts

<table>
<thead>
<tr>
<th>Type of Dust</th>
<th>Ignition Temp. °C Dust Clouds in Air (21% O₂) °C</th>
<th>Oxygen percentage above which ignition of dust clouds by electric sparks occurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminium (atomised)</td>
<td>640</td>
<td>7</td>
</tr>
<tr>
<td>Iron</td>
<td>320</td>
<td>10</td>
</tr>
<tr>
<td>Magnesium (atomised)</td>
<td>600</td>
<td>3</td>
</tr>
<tr>
<td>Zinc</td>
<td>600</td>
<td>10</td>
</tr>
<tr>
<td>Plastics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polystyrene</td>
<td>490</td>
<td>14</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>390</td>
<td>14</td>
</tr>
<tr>
<td>Polyvinyl acetate resin</td>
<td>520</td>
<td>-</td>
</tr>
<tr>
<td>Vinyl butyral resin</td>
<td>380</td>
<td>-</td>
</tr>
<tr>
<td>Agricultural Products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar</td>
<td>350</td>
<td>-</td>
</tr>
<tr>
<td>Wheat dust</td>
<td>470</td>
<td>-</td>
</tr>
<tr>
<td>Wheat flour</td>
<td>380</td>
<td>-</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellulose</td>
<td>480</td>
<td>13</td>
</tr>
<tr>
<td>Coal</td>
<td>610</td>
<td>16</td>
</tr>
<tr>
<td>Wood flour</td>
<td>430</td>
<td>17</td>
</tr>
</tbody>
</table>

(i) Clean up dust accumulation, preferably by the use of vacuum cleaners so that dust dispersal cannot occur. Dust dispersion in the air can produce explosive mixtures

(ii) Store accumulated dusts and explosive or flammable type in safe area free of ignition sources

(iii) Dust collecting equipment is required in buildings with high explosion hazards e.g. grain elevators, flour handling, wood product processing (saw dust), plastic plants and aluminium dust generating processes

(iv) Ventilation systems should be designed by qualified ventilation engineers (See Section 16.3.3)

(v) When cleaning booths, rooms etc. it is necessary to eliminate all ignition sources and keep the ventilation system running

(vi) Ignition sources such as open flames, friction sparks, welding flames, arcs or spatter, static electricity, should not be present or introduced when any hazard exists

(vii) Un-nailed footwear should be used in hazardous dust areas

(viii) Non-sparking tools should be used for all work including cleaning and repair

(ix) Prior to commencing work, run the ventilation system for a short time to remove any potentially dangerous airborne dust or gas that may have arisen through leakage or valves left open
the risk of fire and explosion. Special care is required when working in unfamiliar areas or areas in which hot-work is not generally carried out. Procedures designed to ensure safety in most locations include the following:

(a) When welding or cutting is to be carried out in an area not designed for these purposes, a nominated person must inspect the area and issue a hot-work permit before work commences. This person is defined as a Responsible Officer in AS 1674.1 [68]

(b) Investigate all objects in the area where hot or molten metal or sparks could possibly cause fire or explosion (See Figure 16.2)

(c) Remove all objects to be welded or cut to a safe location if this is possible

(d) Fire hazards that cannot be avoided by relocation of the work must be removed where possible or other suitable safety precautions taken

(e) Guards that are non-combustible should be used to confine flames, sparks and molten metal to the safe area

(f) For work outdoors, grassed areas should be thoroughly soaked prior to commencement of any welding or cutting operation, a competent firewatcher should be on duty (Section 16.5)

(g) High wind conditions can increase the size of the fire danger/hazard area when working outdoors

(h) Hot-work shall not be undertaken outdoors on any Total Fire Ban Days

16.5 Fire Protection

16.5.1 Fire Extinguishers

Fire extinguishers of the correct type or other suitable fire extinguishing facilities are essential where welding and cutting are being carried out and there is a risk of fire. Reasonable access to such equipment should always be provided and the equipment maintained in good order.

16.5.2 Firewatchers

Notwithstanding the issuing of hot-work permits (Sections 16.4 and 16.7) firewatchers should be available when welding or cutting is being carried out in locations where other than a minor fire could develop. Reasonable precautions should be extended to some time after operations have ceased where the possibility of smouldering materials leading to later ignition exists.

Additionally, firewatchers are required where any of the following conditions exist:

(a) Presence of combustibles - if combustible materials such as those used in construction of a building are closer than 15 metres to the location of the arc or flame

(b) Openings – any wall or floor openings that expose combustible materials within 15 metres of the location of the work. This includes concealed spaces such as in double walls or floors

(c) Metal walls – if combustible materials are adjacent to the opposite side of metal walls, partitions etc. and could possibly be ignited by conduction or radiation

(d) Ship work or segmented containers - where direct penetration of sparks, conduction or radiation could cause combustion in an adjacent compartment

16.5.3 Fire Watch Duties

To be effective, firewatchers should:

(a) Be alert to any fire outbreak or hazard

(b) Inspect adjoining compartments, if heat transfer is possible

(c) Take immediate action to combat any outbreak of fire that may occur

(d) Not allow hot-work to occur outside the area specified on the hot-work permit

(e) Immediately stop the work and withdraw the hot-work permit, if a hazardous condition is observed

(f) Monitor changes in wind direction (e.g. by means of a windsock)

(g) Be aware of the need to use eye protection to protect eyes against flashes where hot-work involves arc welding, cutting or air-arc gouging

(h) Be trained in the use of fire extinguishing equipment and ensure adequate fire fighting equipment is on hand

(i) Be familiar with location and method of sounding alarms

(j) Remain continually on the job for the duration of the permit unless properly relieved by an authorised person

(k) Maintain the watch for at least 30 minutes after work ceases. This greatly increases the chance of detecting smouldering fires

16.6 Responsibility for Fire Protection

16.6.1 Responsible Officer

AS 1674.1 defines a Responsible Officer (RO) as a person having satisfactory knowledge of the fire, explosion and toxicity hazards associated with hot-work in hazardous areas and who is adequately trained and experienced in the testing procedures and precautions necessary for the elimination of any risk involved. The RO has the responsibility for ensuring safe conditions apply and issuing hot-work permits in all areas where either the risk or consequences of a fire is appreciable. Attention is drawn to the special considerations applicable to welding on containers or piping (Chapters 21 and 22).
16.6.2 Welders and Other Workers

The welder should ensure that all suitable measures have been taken to avoid fire. Caution should still be exercised even where hot-work permits have been obtained.

16.6.3 Firewatchers

See Sections 16.5.2 and 16.5.3.

16.7 Hot-Work Permits

A common method for managing the risk of fire and explosion is to implement a hot-work permit (HWP). Refer to AS 1674.1.

An example of a hot-work permit is given in Appendix E.

Permits provide a systematic approach to identification of hazards, management of hazards to minimise risk, identification of personnel, accountabilities and actions to be taken to ensure that risks are minimised.

16.7.1 Hazard Identification, Risk Assessment and Risk Management

Hazard identification, risk assessment and implementation of appropriate control measures are essential to developing effective hot-work permits.
17.1 Introduction

This Chapter should be read in conjunction with the WTIA Fume Minimisation Guidelines (Reference 48).

In all arc or gas welding and cutting operations some fume is produced. Hazardous substances legislation requires a risk assessment to address the production and control of fume from welding, cutting and allied processes. Welding processes, procedures and practices generally keep or control these fumes to acceptably low levels. It should be noted, however, that recent studies (Reference 48) have shown that, under still air conditions, exposure standards for particulates and ozone levels can be exceeded in MMAW, GMAW, FCAW, hardfacing, plasma cutting and oxy-fuel cutting. In GTAW, only the exposure standards for ozone were exceeded. Hence it is important to adopt proper welding practices to control exposure.

The components and amount of fume present could affect the welder’s comfort and health necessitating special precautions. Further information on fumes and gases in the welding environment is given in References 18 and 19.

17.2 Fume

This general term is used to describe the mixture of:

(a) Airborne particulates – solid particles covering a wide range in size (See Figure 17.1). The larger particles settle out relatively quickly, whereas small particles remain airborne for long periods with increased chance of inhalation

(b) Gases that are also evolved and mix with the surrounding air and any shielding gases. Such gases may be potentially toxic or asphyxiant where the amount present builds up and excessively lowers the oxygen level

17.3 Formation of Fume

Fume results from vaporisation and subsequent condensation of solids melted during the welding process and from the formation of gases by various materials in the weld area.

The composition of the fume therefore depends upon:

(a) Consumables e.g. electrodes or filler metals, heating or shielding gases and fluxes

(b) Material i.e. chemical composition of metal being cut or welded and of any protective coating, lead-based paints (See Table 13.1 and Section 17.2) or contaminants

(c) Operating conditions e.g. temperature, current

The amount of fume generated depends on:

(a) Process and thermal conditions e.g. amperage, voltage, gas and arc temperatures and heat input that might also vary with the welding position and the degree of skill of the welder

(b) Consumables

(c) Materials

(d) Duration of welding or cutting

17.4 The Constituents of Welding Fume

As welding fume may have short- or long-term irritant, toxic or other effects, the components and levels of fume in the air a welder breathes must not be so high as to cause either undue discomfort or a hazard to health.

When considering exposure to welding fume, the total fume concentration as well as the concentration of individual components has to be taken into account. The hazards associated with fume are outlined in Tables 13.1 and 17.2.
17.5 Welding Fume Concentrations

Long experience, supported by fume measurement, has shown that fume concentrations will generally be at satisfactory levels when working conditions, including work practices and ventilation, are in accordance with Sections 17.6, 17.7, 17.8 and 17.9, and Tables 17.1 and 17.2. The WTIA Fume Minimisation Guidelines show that, under still air conditions, exposure standards can be exceeded for a number of welding processes.

Through the use of consultants, or by purchase of equipment for use by competent persons, companies may, from time to time, monitor breathing zone fume levels in their own workplaces.

Comparatively inexpensive equipment, designed for spot testing of a variety of gases, is commercially available. Such measurements have significant limitations with regard to the calculation of exposure levels, however, they are useful in assessing acutely toxic situations such as carbon monoxide and oxides of nitrogen levels in confined spaces. Refer to Section 20 for details regarding welding in confined spaces.

The concentration of airborne particulates and gases can be sampled for subsequent analysis by using methods described in ISO 10882-1 and ISO 10882-2 (AS 3853 Health and safety in welding and allied processes – Sampling of airborne particles and gases in the operator’s breathing zone Part 1: Sampling of airborne particles and Part 2: Sampling of gases) respectively. Insparable dust concentrations can be assessed using AS 3640 Workplace atmospheres – Methods for sampling and gravimetric determination of inhalable dust.

Measurement of fume is recommended where abnormal or special conditions occur, for example where the recommendations of Tables 17.1 and 17.2 are not practicable. Refer to Appendix C for interpretation of these measurements.

17.5.1 Exposure Standards

For any given chemical substance or agent there are exposure standards under WHS Regulations. Permissible exposure limits (PELS) are defined using a number of terms:

17.5.1.1 National Exposure Standards

The National Exposure Standard provides the concentration of a chemical substance or physical agent that a person can be exposed to on an ongoing basis during a working lifetime without adverse health effects. Threshold limit values (TLVs) are based on an understanding of the known long-term toxicity of a given chemical substance to humans or animals and the reliability and accuracy of the latest sampling and analytical methods. Published information on TLVs is continually updated in light of new information and new research can often modify the risk assessment of substances and new laboratory or instrumental analysis methods can improve analytical detection limits.

17.5.1.2 Time Weighted Average (TWA)

A time weighted average is the average exposure to a chemical substance or agent over a specified period of time, usually a working day or a nominal eight hours. This means that for limited periods, a worker may be exposed to concentrations higher than the PEL, so long as the average concentration over eight hours remains lower.

17.5.1.3 Short Term Exposure Limit (STEL)

A short-term exposure limit is one that addresses the average exposure over a 15-30 minute period of maximum exposure to a chemical substance or agent during a single work shift.

17.5.1.4 Ceiling Limit

A ceiling limit is one that may not be exceeded for any period of time, and is applied to irritants and other materials that have immediate effects.

17.5.2 Optimising welding conditions

Rates of fume generation during welding are influenced by a number of factors. These include:

(a) Welding process
(b) Arc voltage
(c) Arc current
(d) Shielding method
(e) Shielding gas composition
(f) Electrode type and composition, arc stability

Welding processes can be optimised to minimise fume generation.

17.6 Measurement of Fume

17.6.1 Units of Measure

Gaseous fume is measured in parts per million (ppm) by means of chemical reaction tubes or electronic equipment, in a single-stage operation.

17.6.2 Personal Sampling of Gaseous Fume

Ready-calibrated detector tubes, about 100 mm long, are normally made of glass, and are filled with chemical
reagents, which undergo a colour change when exposed to a specific gas. Each tube gives just one, instantaneous, reading and to obtain a time-weighted average sample, several tubes must be used, one after the other, over a known period of time.

17.7 Control of Fume
To ensure that the concentration of fume and exposure to fume at the welder are within permissible limits, welding fume can be controlled by:
(a) Work methods – adopting good housekeeping and workpractices to avoid the unnecessary generation of fume and exposure to it. This includes using manufacturer’s operating parameters, avoidance of excessive welding and repair, selection of optimum welding process and procedures
(b) Substitution – substituting a less dangerous material, process or procedure where this is practicable
(c) Ventilation – using any of the various types as discussed in Section 17.7
(d) Limiting Period of Exposure – limiting the time any one welder is exposed to an excessive fume concentration. While the method is not suitable if health effects are possible from short-term exposure, it may be applicable in some circumstances where effects from long-term exposure are of concern. This method of control should only be adopted if other methods are impractical
(e) Respiratory Protection – where adequate general and local ventilation cannot be readily adopted, it may be necessary to use personal respiratory protection (refer to Section 19.6)

Ventilation is the most usual method of control but it should be remembered that a combination of methods might be necessary in some situations.

17.8 Ventilation
17.8.1 Necessity for Ventilation
In order to avoid build-up of fume to unacceptable concentrations, both in the general work area and in the local vicinity of the welder, ventilation may be needed to remove, dilute or disperse the fume. Refer to the WTIA Fume Minimisation Guidelines (Reference 48).

17.8.2 Selection of Ventilation Method
In determining the suitability of various ventilation systems, the following factors should be considered:
(a) The expected amount and type of fume produced (Section 17.3)
(b) The proximity of welding and other operations and their location relative to ventilation
(c) The level of ventilation, natural or mechanical, both for the whole workshop and local to the welding operation. This will depend also on screens, partitions etc. that may restrict free cross-flow at the work area
(d) The proximity and height of the welder’s breathing zone to the fume source

17.8.3 Local Exhaust Ventilation
The preferred method of controlling welding fume is to use local exhaust ventilation. This collects fume at its source and directs it away from the general work area thus preventing contamination. The suction inlet should be as close as possible to the source of fume and above the source if possible. In this way the fume is drawn away from the welder.

The main methods are:
(a) Fixed local exhaust units to which the components are brought for welding. These fall into two broad categories:
 (i) Welding bench of rear slot design to remove fume away from the welder (See Figure 17.3)
 (ii) Specific purpose ventilation that is advantageous for some production processes. Fixed, appropriately sized local exhaust is provided at critical locations. It may be incorporated into jigs and fixtures. This method can reduce energy requirements and provide improved fume control

With any local exhaust, any degree of enclosure will assist in controlling airflow and reduce the effects of cross draughts. This could take the form of a totally enclosed booth and be incorporated in (i) and (ii).

(b) Movable exhaust hoods attached to ducting by flexible tubing (preferably at least 150 mm diameter) that allows the welder to re-position the suction inlet as welding proceeds (See Figure 17.4). This method is often used where welding cannot be suitably positioned

(c) “On gun” fume extractors of the low volume, high velocity type (Figure 17.5). There are several designs that aim to remove fume close to source. The efficiency of fume extraction is partly dependent on

\[Q = 33 m^3/\text{lineal m of hood} \]
\[\text{Hood length} = \text{required width} \times \text{space} \]
\[\text{Bench width} = 0.6 \text{ m} \times \text{space} \]
\[\text{Duct velocity} = 5 \text{ m/sec} \]
\[\text{Entry loss} = 1.78 V \times 10^5 \text{ dyne cm}^2 \]

Figure 17.3 Welding Booth With Ventilation
the angle of the welding gun. A balance needs to be struck between the extraction rate of fume and the loss of any externally applied shielding gases. This may mean higher shielding gas consumption. Good ergonomic design is essential for welder acceptance. A thoroughly planned maintenance programme has been shown to be essential for these systems to be successful.69

Local exhaust systems must be designed to provide a minimum capture velocity at the fume source of 0.5 m/sec away from the welder. This figure should be verified and recorded at the commissioning of the system and at regular intervals thereafter to ensure continued fume control.

Local exhaust systems should be designed to suit the particular application. For guidance, the following factors are noted, but to obtain maximum efficiency experienced ventilation engineers should be consulted:

(a) Where several welding locations require local exhaust facilities, individual flexible ducts are useful, particularly where welding locations are near one another. To reduce energy requirements, flexible ducting with a smooth interior should be utilised and lengths be kept to a minimum.

(b) The exhaust system should not unduly disturb the gas shield that protects the pool. In general, air speeds of about 1 m/sec over the weld will not cause deleterious weld effects.

(c) Exhausted air and fumes should be discharged outdoors in a way that will not cause environmental problems and in a position such that fumes will not be recycled into any building.

(d) Air cleaning equipment where toxic contaminants are collected will require special working procedures to protect maintenance personnel.

(e) Recirculation of air is permissible to maintain temperature control provided effective air cleaning equipment is utilised in the system.

17.8.4 Mechanical Dilution Ventilation

Dilution ventilation refers to dilution of contaminated air with uncontaminated air in a general area or building for the purpose of health hazard or nuisance control. Air may be blown into the workplace or extracted from the workplace by mechanical means such as roof fans or wall exhaust fans.

Successful dilution ventilation depends not only on the correct exhaust volume but also on control of the airflow through the workplace. Careful positioning of air inlets and outlets is required to ensure that only clean air is moved through the workers’ breathing zones and that other workers in surrounding areas are not exposed inadvertently.

Some limiting factors of dilution ventilation to be considered are:

(a) The quantity of contaminant must not be too great or the air volume required for dilution will be impractical.

(b) The toxicity of the contaminants must be low.

69. Downdraught ventilation tables and “push-pull” ventilation systems have not proved widely successful in controlling welding fume.
Due to the relatively higher levels of fume generated, there is a greater likelihood of co-workers exposure exceeding the relevant exposure standards unless good ventilation is implemented. Particular care should be taken with self-shielded hard-facing wires when indoors.

Precautions and recommendations – see Table 17.1 and Table 13.1 and WTIA Fume Minimisation Guidelines (Reference 48).

17.9.4 Gas Metal Arc Welding (GMAW/MIG/MAG)

Process – with spray transfer the amount of particulate fume produced is similar to that from manual arc welding; less is produced with dip transfer. Gaseous fume depends mainly on the shielding gas although ozone levels should be considered in aluminium welding. With this process distinction should be made between ferrous and non-ferrous applications in assessing the precautions required.

Particulate fume – mainly oxides of iron and alloying elements from filler and the workpiece. Small amounts of copper from copper coated wires but significant amounts in the welding of copper. Aluminium oxides in aluminium welding.

Gases – mainly from the shielding gases, e.g. carbon monoxide, carbon dioxide, argon, helium. In welding of aluminium, higher than normal concentrations of ozone may result.

Precautions and recommendations – see Table 17.1 and Table 13.1 and WTIA Fume Minimisation Guidelines (Reference 48).

17.9.5 Plasma Arc Welding (PAW) and Cutting (PAC)

Process – plasma welding can be conveniently subdivided into low current (approx. 0.1A to 15A) and high current (75A to 300A) applications. Low current welding generally does not result in significant fume levels and in the worst situations local exhaust ventilation would be sufficient to remove fume. High current cutting and welding both generate fume levels that are comparable with high amperage gas metal arc welding.

Particulate fume – oxides of constituents in the workpiece and filler metal if used.

Gases – chiefly determined by the plasma gas used but high levels of ozone and oxides of nitrogen may be formed.

Accumulation of fumes – in the workshop must be prevented by general ventilation. Oxides of nitrogen may be a problem with plasma cutting processes using nitrogen additions to the shielding gas. Water shields and/or underwater cutting eliminates fume.

Precautions and recommendations – see Table 17.1 and Table 13.1 and WTIA Fume Minimisation Guidelines (Reference 48).

17.9.6 Gas Tungsten Arc Welding (GTAW/TIG)

Process – normally a low powered operation with small generation of fume.
PARTICULATE FUME – generally levels are quite low compared to manual metal arc welding. Where filler metals are used particulate fume is increased.

GASES – include ozone (Reference 21), argon shielding gases and mixtures and some oxides of nitrogen.

Precautions and recommendations – see Table 17.1 and Table 13.1 and WTIA Fume Minimisation Guidelines (Reference 48).

17.9.7 Submerged Arc Welding (SAW)
This is inherently a low fume process not requiring particular attention in respect of fume control. Any dust arising from flux handling operations is generally non-hazardous where recommended ventilation conditions apply (See Table 17.1 and/or Table 13.1).

17.9.8 Aluminothermic Welding
Large volumes of particulate fume, generally oxides of iron, are given off in this process. Where the process is used inside workshops, mechanical ventilation should be capable of rapidly dispersing the fume (See Table 17.1 and/or Table 13.1).

17.9.9 Carbon Air-Arc Gouging (CAG)
As directed jets of air are used in this process, it is usually possible to direct the fume away from the welder by use of good technique. With heavy duty gouging a good level of general ventilation is required to ensure that the general workshop atmosphere is safe. Alternatively, specially designed work booths may be used. Fume exhaust systems may be difficult to design but are required in confined spaces where it may be necessary or advisable for operators to use protective devices (See Table 17.1 and/or Table 13.1).

17.10 Materials and Consumables
17.10.1 Source of Fume
Research (Reference 22) indicates that the major source of particulate fume in welding is from vapourisation and subsequent solidification of the consumable. The contribution of the workpiece should not, however, be ignored particularly with toxic metals or applied coatings.

The gaseous components of welding fume arise from a number of sources dependent upon the process being used, such as:

(a) Decomposition of fluxes in manual metal arc or flux-cored arc welding of steel produces mainly carbon dioxide and carbon monoxide gases
(b) Where external shielding gas sources are used, e.g. inert gases (argon, helium) or carbon dioxide, the fume contains these gases and those formed from them or air e.g. carbon monoxide and oxides of nitrogen
(c) Combustible reaction products such as carbon monoxide from incomplete oxidation and carbon dioxide from complete combustion in oxygen-fuel gas flame processes
(d) Thermal reactions between oxygen and nitrogen, either from the gases used or ambient atmosphere, form oxides of nitrogen
(e) Ultraviolet radiation is capable of forming ozone from oxygen in the atmosphere. This process is more significant in high-energy gas metal or tungsten arc welding or plasma processes and when working with aluminium or stainless steel

17.10.2 Special Materials
In addition to the ventilation guidelines for welding and cutting given in Table 17.1, specific ventilation requirements for the special materials listed in Table 17.2 are required. See Table 13.1.

17.11 Coated Metals
There are occasions when metals that have been coated with plastics, polyurethane, epoxy materials, paint or metallic coatings are to be welded, soldered, brazed or cut. The most common examples are steels coated with priming paint for rust prevention, galvanised steels and chrome plating. In certain instances cadmium and lead plated, coated or sheathed metals may be encountered.

17.11.1 Hazards
Coated metals present two major hazards to welders: fumes given off by thermal decomposition during welding, and dusts created during surface preparation work. The dusts can also create a fire/explosion hazard.

(a) Metallic coatings – metal coatings may be galvanised (zinc), metal sprayed (aluminium, zinc and others) and electroplated (chromium with copper and nickel underlays, cadmium, zinc or tin). Regardless of the process used to deposit the coatings, fume and dust emissions can be identified from knowledge of the metals involved (refer to Table 13.1).

(b) Paints – these give off a complex mix of fumes and dusts. Metals such as lead, zinc, chromium and cadmium may come from pigments in the paint. Organic compounds come from pigments, resins and other materials in the paint (See (c) below). Although “weld through” primers have been developed, these only reduce the amount of fume, not necessarily removing the problem

(c) Plastics – like paints, these can generate a complex mixture of fumes and dusts. The fumes can be irritant, corrosive, asphyxiating or toxic, for example ammonia, hydrochloric acid, carbon dioxide, cyanides. Dusts from plastics create the risk of dust explosions and fire

17.11.2 Control Measures
A number of measures can be taken to avoid or minimise the health and safety hazards associated with fume and dust.
Table 17.1 Guide To Ventilation Required for Welding and Cutting Uncoated Carbon and Low Alloy Steels (Note 1)

<table>
<thead>
<tr>
<th>Process</th>
<th>Scale of Production (Note 3)</th>
<th>Outdoor</th>
<th>Open Work</th>
<th>Limited Work Space</th>
<th>Confined Space (See also Chapter 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Welding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Tungsten Arc Welding</td>
<td></td>
<td></td>
<td>M (Note 6)</td>
<td>M (Note 6)</td>
<td>LE</td>
</tr>
<tr>
<td>Brazing and Soldering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(See also Chapter 9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flame Gouging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Preheating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flame Cutting</td>
<td>All</td>
<td>N</td>
<td>M or WT (Note 6)</td>
<td>M (Note 6)</td>
<td>LE</td>
</tr>
<tr>
<td>Manual Metal Arc Welding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Metal Arc Welding</td>
<td>All</td>
<td>N</td>
<td>M (Note 6)</td>
<td>LE (Note 6)</td>
<td>LE</td>
</tr>
<tr>
<td>Plasma Arc Welding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flux Cored Arc Welding</td>
<td>Normal</td>
<td>N</td>
<td>M</td>
<td>LE</td>
<td>LE</td>
</tr>
<tr>
<td>Plasma Arc Cutting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Assessment by test is often needed in limited or confined space)</td>
<td>All</td>
<td>M or LE or V or PRP (Note 5)</td>
<td>LE or V or WT</td>
<td>LE or V or WT</td>
<td>LE</td>
</tr>
<tr>
<td>Submerged Arc Welding</td>
<td>All</td>
<td>N</td>
<td>N</td>
<td>M</td>
<td>LE</td>
</tr>
<tr>
<td>Electroslag Welding</td>
<td>All</td>
<td>N</td>
<td>N</td>
<td>M</td>
<td>LE</td>
</tr>
<tr>
<td>Electrogas Welding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminothermic Welding</td>
<td>Normal</td>
<td>N</td>
<td>M</td>
<td>LE</td>
<td>LE</td>
</tr>
<tr>
<td>Arc-air Gouging</td>
<td>High</td>
<td>N</td>
<td>M</td>
<td>LE</td>
<td>LE</td>
</tr>
</tbody>
</table>

NOTES:

1. This Table applies to uncoated carbon and low alloy steel with or without rust or scale. Table 17.2 identifies materials for which more stringent ventilation is required, e.g. for which mechanical or local ventilation is needed under open workspace conditions.

2. N – Natural ventilation (See 17.7.5)
 - M – Mechanical (general exhaust or plenum) ventilation (See 17.7.4)
 - LE – Mechanical ventilation by local exhaust systems (See 17.7.3)
 - PRP – Personal respiratory protection (See 19.6)
 - WT – Water table
 - V – Vortex

 Ventilation is the recommended minimum except where fume measurements show other ventilation is acceptable.

3. High production refers to duty cycles exceeding approximately 40% and/or high amperage processes, e.g. in excess of 350A.

4. Open work is defined as an area where:
 a. The average space per welder exceeds 300 cubic metres (minimum height 3 metres)
 b. Free cross ventilation occurs and fume disposal is not obstructed by the work, partitions, balconies or screens. The welder generally keeps his head out of the main plume
 c. The shop has roof or high wall vents and is not airtight construction

5. Limited workspace is an area that does not fulfil the requirements of an open workspace but is not a confined workspace

6. Confined workspace is defined in 20.1

7. Operational conditions will determine the degree of ventilation required.

8. Mechanical or local exhaust ventilation (as appropriate) is unlikely to be required if process working time is not more than 5% (24 minutes) of an 8 hour work day, provided that the process is used at reasonably intermittent periods (say a maximum of 5 minutes in any 1 hour).
(a) Identification of the coating – the coating should be identified before carrying out processes that may create dust or fume. If this is not possible then local ventilation is required.

(b) Removal of the coating – the coating may be removed before welding using procedures that do not create dust or other hazards. The following clearances should be used as guidelines only:

(i) For welding, a band of 20 to 25 mm should be removed each side of the weld line.
(ii) For flame cutting, a band of 50 to 100 mm should be removed on both sides of the cut.

(c) Ventilation – natural and mechanical ventilation are only suitable for low levels of fume or dust. Toxic fume or dust should be controlled by local ventilation.

17.12 Metal Preparation Processes

17.12.1 Introduction

Welding on some non-ferrous alloys, particularly aluminium, nickel alloys and some stainless ferrous alloys, involves the use of degreasing agents prior to welding. Such agents reduce the risk of weldment defects due to the influence of hydrocarbons in grease and oil but may cause fume. They may also cause skin irritation.

Commonly used degreasing agents are:

(a) Chlorinated hydrocarbons
 (i) trichloroethylene (should only be used in a vapour degreasing tank, cold cleaning is not recommended)
 (ii) perchlorethylene
 (iii) trichloroethane

(b) Acetone

(c) Chlorofluorocarbons (CFCs) such as Freon have been phased out of use.

17.12.2 Hazard

Under certain circumstances, chlorinated hydrocarbon degreasing agents decompose to form highly toxic gas, phosgene (References 23, 24). Dangerous concentration of phosgene can be produced from small amounts of vapour.

Formation of phosgene from the above and other chlorinated hydrocarbons is promoted by:

(a) Ultraviolet radiation
(b) Hot metal surfaces
(c) Welding arc (ultraviolet radiation)
(d) Flame
(e) Cigarette smoking

The gas shielded arc-welding processes (GMAW and GTAW) and plasma processes provide greater light radiation intensity than the flux-shielded welding processes.

17.12.3 Precautions

(a) Where degreasing agents are used, great care is required if gas metal arc welding (GMAW), gas tungsten arc welding (GTAW) or plasma processes are used.
(b) Plates that have been degreased must be thoroughly dried before welding or plasma cutting.
(c) No solvent vapours are to be present during welding or plasma cutting.
(d) The location of degreasing operations and welding operations should be well separated, preferably in different rooms.
(e) Chlorinated hydrocarbon degreasing solvents must not be used or stored near welding operations.
(f) Manufacturer’s recommendations must be adhered to in handling all degreasing solvents.
(g) AS 1627.1 provides information on preparation and pre-treatment of metal surfaces.
(h) When degreasing must be carried out in the welding area use acetone.

Some metal preparation processes can contribute to fume hazards during welding. In particular the fire risk with flammable solvents and the decomposition of chlorinated hydrocarbons to form toxic gases needs to be highlighted.

Precautions are dealt with in Section 10.3.1.

17.13 Contaminated Surfaces

In maintenance or repair operations, the surfaces to be welded or cut are frequently contaminated with various materials, sludge etc. To provide quality welds, it is usually essential that such materials be removed. Likewise, unless the materials are known to be non-hazardous, they should be removed as in Section 17.10. See also Chapter 21.

71. Acetone is highly flammable (more so than petrol). If used near welding or other sources of ignition it should be dispensed from a flameproof container such as a plunger can.
Table 17.2 Ventilation for Special Materials During Welding, Brazing, Cutting and Gouging (Note 1)

<table>
<thead>
<tr>
<th>Contaminant (Note 2)</th>
<th>Fume Produced</th>
<th>Medical Effects</th>
<th>Recommended Ventilation (Note 3 & 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Outdoor and Open Work Space</td>
</tr>
<tr>
<td>Aluminium (Note 8)</td>
<td>Aluminium oxides</td>
<td>Irritant (respiratory tract)</td>
<td>M (Note 9)</td>
</tr>
<tr>
<td>Barium</td>
<td>Barium oxides and Fumes</td>
<td>Respiratory tract and skin irritant, benign pneumoconiosis with heavy exposure</td>
<td>LE</td>
</tr>
<tr>
<td>Beryllium</td>
<td>Beryllium oxides and fume</td>
<td>Very toxic (respiratory tract, lungs, general poisoning, skin). Quick acting. Carcinogen</td>
<td>All locations LE and PRP or special glove box</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Cadmium oxide</td>
<td>Very toxic (lung damage, general aches). Quick acting. May be fatal</td>
<td>All locations LE and PRP or special glove box</td>
</tr>
<tr>
<td>Chromium (Note 8)</td>
<td>Chromium (VI) oxide</td>
<td>Toxic (respiratory tract, lungs) irritant and corrosive to skin. Possible carcinogen (Refs. 1 & 43).</td>
<td>LE</td>
</tr>
<tr>
<td>Cobalt</td>
<td>(Note 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper (Note 8)</td>
<td>Copper oxides</td>
<td>“Metal fume fever” (Note 6)</td>
<td>M</td>
</tr>
<tr>
<td>Fluorine</td>
<td>Fluorides (of calcium, sodium, potassium)</td>
<td>Irritant (mucous membranes)</td>
<td>M</td>
</tr>
<tr>
<td>Lead</td>
<td>Lead fumes</td>
<td>Toxic. Cumulative poison (regular lead-in-blood tests recommended)</td>
<td>LE</td>
</tr>
<tr>
<td>Manganese (Note 8)</td>
<td>Manganese oxides</td>
<td>Toxic (tiredness, nervous system, pneumonia)</td>
<td>M</td>
</tr>
<tr>
<td>Nickel (Note 7)</td>
<td>Nickel fumes</td>
<td>“Metal fume fever” (Note 7) possible carcinogen</td>
<td>LE</td>
</tr>
<tr>
<td>Ozone</td>
<td>Ozone</td>
<td>Respiratory tract irritant</td>
<td>LE</td>
</tr>
<tr>
<td>Zinc</td>
<td>Zinc oxide</td>
<td>“Metal fume fever”</td>
<td>M</td>
</tr>
</tbody>
</table>

NOTES:
1. The level of ventilation given is the minimum recommended for average conditions. For confined spaces, refer also to Chapter 20
2. For origins of contaminants, see Table 13.1
3. Open work space is defined as an area where:
 a. The average space per welder exceeds 300 cubic metres (minimum height 3 metres)
 b. Free cross-ventilation occurs and fume disposal is not obstructed by the work, partition, balconies or screens
 c. The welder generally keeps his head out of the main plume
 d. The shop has roof or high wall vents and is not airtight construction
4. Limited workspace is an area that does not fulfil the requirements of an open workspace but is not a confined workspace
5. Confined workspace is defined in 20.1
6. M – Mechanical dilution ventilation (See 17.7.4)
 LE – Mechanical ventilation by local exhaust systems (See 17.7.3)
 PRP – Personal respiratory protection (See 19.6)
7. Health hazards from welding fume containing cobalt are not documented, but there are well-known dangers associated with the processing of cobalt by other techniques. It is recommended that the precautions prescribed for nickel are applied when cobalt is present in welding consumables
8. “Metal fume fever” is temporary tiredness and irritation of the respiratory tract, like influenza, with fever. Recovery usually occurs within 24 hours
9. When nickel and chromium fume occur together, ventilate for chromium
10. The ventilation recommended in this Table does not apply when these elements are present in carbon and low alloy steels. The level of each element is very low in such materials
11. Fumes can exceed exposure standards under still air conditions. Refer to WTIA Fume Minimisation Guidelines (Reference 48)
Figure 17.6 Control of Welding and Cutting and Guiding Fume using Fume Extractor
18.1 Need for Noise Control

Noise has been recognised as one of the most serious occupational health issues in industry for many years. Noise can temporarily and permanently impair hearing. It can also annoy, limit ability to communicate, cause fatigue and reduce concentration and efficiency in personnel.

Hearing loss caused by noise usually has an insidious onset and is permanent. It can cause social isolation at home, work, and in group situations. Noise induced hearing loss (NIHL) is selective, because it affects higher pitched sounds first. This filtering effect leaves some sounds unaffected and others, such as consonants in speech, impossible to understand.

Surgery or medication cannot restore lost hearing. Hearing aids provide only limited help in compensating for the filtering to reduce the distortion of the message. Hearing loss does not protect you from further hearing loss and deafness may occur if exposure continues.

There are many welding and hot-work tasks that expose workers to hazardous levels of noise. Furthermore, some welding tasks, themselves posing no threat to hearing, may take place in areas with hazardous levels of background noise.

18.2 Effect of Noise on the Ear

Sound travels through air in the form of pressure waves. The ear detects the pressure changes and sends messages to the brain. Sound passes through the outer ear into the middle ear that begins at the eardrum. The sound is then transmitted by the eardrum and three tiny bones (the auditory ossicles) to the inner ear. The hearing organ in the inner ear is called the cochlea. The cochlea is full of fluid and lined with tiny auditory hair cells. It is these auditory hair cells that are damaged by excessive noise. While at first with enough quiet the cells may recover (temporary hearing loss), repeated excessive noise exposure will lead to permanent damage. Usually damage occurs gradually, however extremely loud noises can cause immediate lasting damage.

18.3 Noise

Sound is characterised by its frequency and intensity. Frequency is a measure of the number of sound pressure waves passing a stationary point per second; i.e. cycles per second or hertz. The average young person can detect sound from 20 to 20,000 hertz. Noise induced hearing loss occurs to a different extent at different frequencies and is usually most pronounced around the 4,000 hertz frequency.

Intensity or loudness expresses our general response to the sound; it is not an accurate way to assess the damage the noise can do. For this purpose the total energy content over time of the sound wave is measured. This is expressed in decibels (dB) for an 8-hour day or L_{Aeq}.

Since the potential for hearing damage varies with frequency, the noise level is weighted to reflect this, i.e. dB (A). The decibel is a unit of logarithmic scale that means that a 3dB increase in noise level corresponds to a doubling of the sound energy.

Figure 18.1 shows the typical noise levels of a number of sound sources.
18.4 Noise Sources
The principal sources of noise in metal fabrication are shown in Figure 18.1.

It is important to realise that tasks or equipment that result in short, sharp noises can be equally if not more hazardous to hearing than continuous noise sources.

18.5 Detection of Hazardous Noise
Hazardous noise levels may be present in the workplace if:

(a) There is difficulty with speech communication, e.g. voices have to be raised between people at arm’s length

(b) People complain of ringing or buzzing noises in their ears after a shift (tinnitus)

(c) There are complaints from people of dullness or fuzziness of hearing at the end of a shift

18.6 Noise Measurement
When a problem is thought to exist and cannot be controlled, the extent of the problem should be determined through a noise survey. A noise survey should detail the levels present, the sources of the noise and the people affected by the noise. A noise survey must be carried out under the supervision of a trained person using equipment approved to AS IEC 61672, sound level meters and measurement techniques as detailed in AS/NZS 1269.3

18.7 Limits on Noise Exposure
The current statutory requirement should always be referred to when assessing noise exposure. As well as the Daily Noise Dose, a peak noise level is set. This level is intended to control impact or sudden noises.

18.8 Noise Control
Noise control methods are arranged into what is called a “control hierarchy”. It is called a hierarchy because the most effective means of noise control are considered first and the least effective. Generally, personal hearing protection should be used only when passive methods (i.e. not requiring worker action) are not practical.

18.8.1 Control by Elimination and Substitution

The best means of noise control is the elimination of the noise source. The next best is the substitution of the noisy operation or equipment with a less noisy alternative. Both substitution and elimination of high noise equipment or processes should be considered whenever setting up a new workplace or redesigning an old one; reviewing work operations or tasks; and purchasing new equipment. Nowadays there is a huge range of equipment on the market that not only does the job but also is designed to minimise noise and vibration levels.

18.8.2 Control at the Noise Source
If elimination or substitution is not possible, control of the noise at its source is the best approach. This typically takes the form of enclosing the noise source or modifying it e.g. fitting silencers to noisy air exhausts. Adequate maintenance of moving parts in machinery (oiling and greasing), replacing worn out parts, and replacing defective silencers or mufflers are effective in minimising noise. Where the noisy operation is a manual task, then mechanisation or automation may be the only alternative.

18.8.3 Control of Noise Transmission
If the noise source is separate from the exposed workgroup then the noise path can be reviewed. Increasing the distance between the noise and the exposed group decreases the noise exposure level. If practical, noisy machines can be put in a separate building. Sound baffles can be installed in the noise path and appropriate building materials can be used to reduce reverberations and reflected noise.

18.8.4 Administrative Noise Control
Administrative noise control includes:

(a) Limiting the exposure of individuals

(b) Signposting quiet areas or pathways through a noisy plant

(c) Isolating noisy work from other working areas

(d) Rescheduling work to minimise the work exposure of people not directly involved with noisy tasks

18.8.5 Control Through Personal Protection

When the above methods cannot reduce noise to acceptable levels then it is necessary for personnel to use hearing protection (Figure 18.2). Hearing protection takes the form of earmuffs or earplugs. All hearing protection should be in compliance with AS/NZS 1270:2002 Acoustics – Hearing protectors.
There are a wide variety of hearing protectors on the market and each does not suit all situations. Points to consider when choosing hearing protection include:

(a) Attenuation of the device (how much protection the device provides). The National Acoustic Laboratory (NAL) provides definitive advice. It should be recognised that the actual attenuation on the shop floor will fall well short of the possible figure as measured by the NAL.

(b) Correct individual selection of noise protection devices

(c) Acceptability by the user i.e. comfort

(d) Compatibility with other protective equipment e.g. welding face shields

(e) The necessity of having reliable and effective cleaning and maintenance facilities and procedures for the hearing protection

(f) The necessity of user training and motivation

(g) The suitability for the particular work environment

Use of hearing protection may be supported by audiometric surveys of workers in high noise areas, as required by regulation in some states.

18.8.6 Audiometry

Audiometry is the measurement of an individual’s hearing in order to determine the hearing threshold and any hearing loss. Audiometry only measures the effects of noise exposure and it gives little useful information about noise sources, amounts of exposure or appropriate noise control measures. Audiometry is not an acceptable means of noise control.

18.8.7 Summary

Exposure to high noise levels can cause permanent serious damage to hearing. The hierarchy of noise control measures suggests a number of practical approaches to noise control. In reality any particular workplace will probably use a combination of the above strategies once economics and technology are considered.

Noise control and audiometry require professional advice. The introduction of hearing protection should occur under professional supervision.

In the welding area there many avenues for noise reduction, either through the use of quieter welding techniques, less chipping, use of nylon or plastic hammers, vibration damping or better placement of heavier welding screens to shield other workers.

18.9 Vibration

In addition to possibly causing extreme noise and fatigue, vibration may be a problem where prolonged use of such hand tools as grinders and cutters occurs. Excessive vibration may result in a range of problems; foremost of these is Vibration White Finger (VWF). VWF results in decreased blood circulation in the fingers. This in turn makes the fingers more susceptible to cold and injury. Vibration exposure may be reduced by such things as good tool design, regular tool maintenance and wearing of suitable gloves.
19.1 Introduction
During welding operations, the welder may be exposed directly to radiation, heat, fumes, particles etc. This requires the use of special equipment for personal protection (Reference 25). Such equipment is needed in addition to the use of safe welding equipment and tidy workplace.

This section deals with the types, use, selection and care of personal protective equipment (PPE) and clothing for the protection of welders and other personnel in the immediate vicinity of welding, cutting and allied operations.

Protective equipment and clothing is of no value unless it is used at all appropriate times and maintained in good condition.

19.2 Recommended Equipment for Various Processes
Protective equipment and clothing that should be used for various processes are listed in Table 19.1.

19.2.1 Hierarchy of control
PPE is the last option in the hierarchy of control of hazards. Refer to Chapter 3, Section 3.9.1. For a number of hazards encountered in cutting and welding, PPE is the only defence against the hazard. It is therefore of great importance to use the correct equipment.

19.3 Protection of Eyes and Head
19.3.1 Purpose
Accidents involving the eyes are most common in welding. The eyes and head including ears are particularly sensitive parts of the body and almost always require some protection during welding against:
(a) Radiation (See Chapter 15)
(b) Burns that may result from small globules of hot metal or slag
(c) Particles from welding, chipping, gouging etc. entering the eye or ear
(d) Falling objects, especially when working at heights or below construction activities (See Chapter 25)
(e) Noise (See Chapter 18)

19.3.2 Helmets and Hand shields
A typical helmet is shown in Figure 19.1. The construction of such devices, together with the protective filters incorporated within them, should conform to AS/NZS 1337.1 and AS/NZS 1338 Filters for eye protectors. Where possible, welders should always use full helmet equipment to provide the maximum possible protection. Such helmets or hand shields should be constructed of non-flammable, non-conducting materials with non-reflecting surfaces e.g. fibre, glass fibre reinforced plastic or similar materials. Helmets should have sufficient clearance from the face to permit ventilation and should be light yet durable.

The welding helmet shall be marked as complying with AS/NZS 1337.1. This Standard requires the helmet to have an impact rating of at least a medium impact protector.72

19.3.2.1 Clear lenses
Many welding helmets are fitted with clear lenses. Clear lenses are of two distinct types: spatter resistant, and

72. High impact protection is considered by WTIA to be necessary for grinding operations
impact (shatter) resistant. The spatter resistant lenses are placed in the moveable part of the eye protector.

The impact (shatter) resistant lenses are placed in the fixed part of the eye protector, i.e. behind the spatter protection and filter lenses and directly in front of the welder’s eyes. It is a requirement of AS/NZS 1337.1 that impact resistant lenses are at least medium impact protectors and that they are marked accordingly.

19.3.3 Protective Goggles

Protective goggles should conform to AS/NZS 1337.1, which covers a wide variety of suitable types. The primary features are an ability to provide protection against flying particles and fragments, dusts, splashing materials and molten metals, harmful gases or vapours and against the appropriate optical radiation. Some types allow for fitting of filters that protect the eyes against harmful ultraviolet or infrared radiation.

These wavelengths constitute the major radiation hazard generated by the welding process (AS/NZS 1336 Section 5.8). Goggles should be non-flammable preferably with anti-glare sides.

It is good practice for welders to wear safety spectacles with side shields underneath helmets to provide increased protection at all times.

For most open arc welding operations, goggles, even with appropriate filters, will not afford sufficient facial protection for welders, however, they often give:

(a) Added protection against stray arc flashes particularly if welders are working closely together
(b) Adequate protection for observers or welders’ assistants provided they are sufficiently far away from the arc to avoid skin burns due to radiation or molten or hot particles

Similarly, it is strongly recommended that all persons working in the vicinity of any welding operations wear either protective goggles or safety glasses with side shields as these will provide limited protection against accidental arc flash and exposure by absorption and reflection. This type of eyewear is not glare resistant nor is it guaranteed to be 100% UV/IR resistant unless specifically tested for this. Such eyewear cannot guarantee that people working in the vicinity of welding operations will not suffer from adverse effects of excessive UV exposure, as there is no substitute for the appropriate shielding of welding operations of nearby activities.

19.3.4 Contact Lenses

Persons who wear contact lenses should ensure precautions are taken to avoid dust, metallic particles and the like being lodged in their eyes. Foreign bodies can be very difficult to remove in these circumstances and can, if they collect behind the lens, cause severe discomfort and an increased risk of more severe damage to the eye.

Suitable protective filters must be worn during welding operations (See Section 19.3.5), and similarly, welders and any persons working in the vicinity of welding operations should wear suitable protective goggles or safety glasses.

There is no additional radiation risk arising from any welding process or operation such as exposure to arc flash when using contact lenses (Reference 26).

19.3.5 Protective Filters

Protective filters are provided to reduce the intensity of radiation entering the eye (References AS/NZS 1336 and AS/NZS 1338.1) and thus effectively filter out part of the visible, infrared and ultraviolet radiation. Such filters are incorporated within welding helmets and can be fitted to certain goggles. To prevent damage to the filters from molten or hard particles an additional hard clear glass or CR-39 plastic external cover is provided (See Figure 19.2). This cover should always be kept in place and replaced before the damage becomes sufficient to impair vision.

Lift-front welding helmets should incorporate a high impact resistant chipping lens made of polycarbonate material.

When selecting an appropriate filter, the following factors should be kept in mind:

(a) The intensity of radiation, and thus degree of protection required, depends mainly on the process and welding current (AS/NZS 1336 Section 5.8). Table 19.2 gives recommendations for suitable filters and should provide the basis for selection
(b) The objective is to achieve protection for the eyes whilst maintaining adequate visibility of the workpiece. Poor visibility causes eyestrain and spoiled work
(c) If, after selecting a filter suited to the welding process and conditions (Table 19.2), vision is poor, attempts should be made to improve illumination of the workpiece rather than using an inadequate filter
(d) Observers, who are required to closely view the arc, say from a distance of less than 3 metres, should also wear full-face protection and also select filters as recommended in Table 19.2
(e) For welders’ assistants and other personnel who are often within about 6 metres of the arc, it is safe practice to wear goggles with a filter shade No.3 even though it is generally not necessary for them to view the arc. Protection of others situated further from the arc is accomplished by the use of suitable protective screens or partitions (Sections 15.2 and 19.5)

Figure 19.2 Protective Filters
19.3.6 Welding Helmets with Self-Darkening Filters

Welding helmets are available with light reactive filters that change automatically and almost instantaneously from the light to the dark state when the arc is struck and return automatically to the light state as soon as the arc is extinguished.

The most significant requirements and benefits of self-darkening filters are:
(a) That the levels of UV and IR filtration in the light state are to be the same as in the dark state
(b) Specified response times for the changeover from light to dark state
(c) Frees both hands for welding
(d) Eyes are permanently protected from harmful radiation (in both the light and dark state)
(e) Assists in achieving accurate striking of the arc
(f) Reduces fatigue
(g) Improves productivity

19.3.7 Welders’ Caps

Welders’ caps will provide additional protection for the top of the head from radiation reflected from adjacent surfaces. They should be used in welding overhead. Welders’ caps should be made of heat resistant material that is not readily flammable. Welders with long hair should use hoods or nets that cover and hold the hair underneath appropriate caps or head shields.

For additional head protection on construction sites, welding helmets should be attached to safety hats.

19.4 Protective Clothing for the Body

19.4.1 Purpose

With usual industrial arc and flame processes, it is necessary to wear suitable protective clothing to protect the welder’s body and clothing against:
(a) Heat from the work
(b) Burns that may result from contact with hot components or small globules of hot metal and slag
(c) Ultraviolet light that may burn the skin or deteriorate clothing
(d) Cold winds or rain

With allied processes, e.g. grinding, suitable protection for the particular hazards involved are also essential (Table 19.1).

19.4.2 Type of Work Clothing

The normal working clothing of a welder is generally his own responsibility. Clothing should:
(a) Protect all parts of the body from hot particles or objects
(b) Be preferably of wool or flame-resistant canvas that is much safer in fire than most synthetic materials such as nylon that melt or readily stick to skin when overheated. Woollen materials have much greater resistance to ultraviolet radiation e.g. from Gas Metal Arc or Gas Tungsten Arc Welding of aluminium and stainless steel
(c) Be free of cuffs or open pockets that could trap molten metal causing local burns or setting fire to clothing
(d) Fit snugly at wrists but be loose fitting when working in hot conditions
(e) Cover tops of footwear

19.4.3 Gloves

Gloves for hot-work on metals should:
(a) Be worn during all arc, gas or thermal cutting operations to protect the hands and wrists from heat, burns and cuts. Hands are usually the closest part of the body to the heat source
(b) Be of pliable flame-resistant leather or of aluminised type for very hot operations such as confined heavy arc or oxy-gouging. Rubber shall not be used

Figure 19.3 Typical Welder’s Caps

(Images Courtesy BOC)
Figure 19.4 Welding Glove Complying with AS/NZS 2161 Parts 3 and 4
(Image Courtesy BOC)

(c) Have seams arranged inside to prevent burning of stitches and trapping of hot metal particles.
(d) The non-seamed type of glove with reinforcement between thumb and forefinger is preferred
(e) Comply with AS/NZS 2161 Occupational protective gloves Parts 3 and 4 (See Figure 19.4)
(f) Marked in accordance with the requirements of AS/NZS 2161.3 and AS/NZS 2161.4

19.4.3.1 Protection Against Mechanical Risks
Gloves for hot-work on metals should comply with the minimum requirements of AS/NZS 2161.3, i.e. have Level 1 compliance in:
(a) Abrasion resistance
(b) Blade cut resistance
(c) Tear resistance and
(d) Puncture resistance

19.4.3.2 Protection Against Thermal Risks (Heat and Fire)
Gloves for hot-work on metals should comply with the minimum requirements of AS/NZS 2161.4, i.e. have Level 1 compliance in:
(a) Burning behaviour
(b) Contact heat
(c) Convective heat
(d) Radiant heat
(e) Small splashes of molten metal
(f) Large quantities of molten metal

19.4.4 Safety Footwear
In most industrial situations where welding is used, there is a risk of injury to feet or toes from a number of causes, including:
(a) Fractures from falling objects
(b) Burns from molten or hot particles penetrating or entering footware
(c) Cuts from intrusion of sharp objects through soles

To provide adequate protection it is recommended that protective footwear in accordance with AS/NZS 2210

OCCUPATIONAL PROTECTIVE FOOTWEAR Part 3 Specification for safety footwear or Part 4 Specification for protective footwear be used.

As a minimum requirement the following types of footwear are suggested:
(a) Normal work – AS/NZS 2210.4 – Code designation I (protective footwear – medium duty)
(b) Heavy plate work – AS/NZS 2210.3 – Code designation I (safety footwear – heavy duty)
(c) Wet work – AS/NZS 2210.3 or AS/NZS 2210.4 – Code Designation II (safety (heavy duty) or protective (medium duty) footwear – waterproof)

19.4.5 Additional Protection

Aprons, sleeves, shoulder covers, leggings or spats of pliable flame-resistant leather or other suitable materials may also be required in positions where these areas of the body will encounter hot metal, e.g. overhead welding, (See Section 19.3.7 for caps) or if leaning on hot metal, or sitting at a bench where molten metal may land in the lap.

19.4.6 Clothing Condition

Clothing should be of appropriate industrial grade and heat resistant. Whilst correct industrial grade clothing in sound dry condition and correctly fitted can be shown to provide adequate electrical protection of welders, any deterioration in condition or addition of moisture can render a garment sufficiently conductive to present a risk of electric shock or electrocution. Hence it is incorrect to assume that clothing is providing any protection from electric shock. Moisture level should be kept as low a reasonably practicable.

All protective clothing including gloves and footwear should be free of tears. Steel toecaps should not be exposed.

19.5 Screens and Curtains

All electric welding operations should be screened to prevent the rays of the arc from affecting other persons working in the vicinity. Where the work is carried out at fixed benches or in welding shops, permanent screens or curtains should be erected. Where the nature of the work is such that these are not practicable, temporary screens should be used to limit the radiation.

All screens should be opaque or of appropriate translucent materials, of sturdy construction to withstand rough usage, and of material that will not readily be set alight by sparks or hot metal.

They should not, however, be so heavy or cumbersome as to discourage their use. They should permit ventilation under and over – 300 mm bottom clearance is usually adequate.

The design and construction of the screen should conform to AS/NZS 3957 and they should be selected in accordance with AS/NZS 1336.
19.6 Respiratory Protection Devices

19.6.1 Introduction

In special situations where general or local ventilation systems are not effective in reducing fume levels, personal respiratory protection in accordance with AS/NZS 1715 is required. The following general requirements should be considered when selecting respiratory protective devices.

(a) They are carefully selected for each application (expert occupational hygiene advice may be required). A common problem is fitting respiratory protection devices under welding face pieces and helmets, and specifically designed variants may have to be used. All devices used should conform to AS/NZS 1716 Respiratory protective devices and be used in accordance with AS/NZS 1715

(b) Face pieces of filtering devices or negative pressure supplied air devices have to closely fit the face. Full or half face piece respirators should not be worn by individuals with beards, long moustaches, sideburns, or with stubble growth. Air supplied hood type respirators should be used

(c) All respirators must be clean and in good condition before use. They must only be transferred between persons if they have been adequately washed and disinfected

(d) All respirators should be stored in a clean area such as a closed cupboard in its original box

(e) Training in correct use of respiratory protection devices is essential

19.6.2 Respirator Types

(a) Air hose mask respirators – these comprise a full face piece fitted with a length of relatively large bore air hose through which air from a clean source is drawn by the normal breathing action of the wearer

(b) Air line respirators – these may be of full-face, half face piece, hood or helmet type. A common feature of each of these is the supply of clean breathable air at suitable pressure from a remote source. Workshop compressed air, after filtering to remove oil droplets, is usually suitable for breathing

(c) Self Contained Breathing Apparatus (SCBA) – this equipment is entirely self-contained with an air cylinder and the user is not dependent on an air compressor

(d) Escape type SCBA – these incorporate a small cylinder of compressed air that may be turned on and used to escape from an atmosphere immediately hazardous to life if the working air supply fails. They must be used with a full-face piece respirator

(e) Particulate respirators – a variety of particulate respirators are available conforming to P1 or P2 class filtration efficiency as defined in AS/NZS 1716. These include disposable respirators or masks as well as half face and full-face pieces, respirators fitted with suitable cartridge or canister type filters. These should be selected to protect the wearer against harmful inhalation of dusts, solid particles and metallic fumes (See Figure 19.5). For welding operators, class P2 respirators should be worn

(f) Gas respirators – these may be half or full-face respirators fitted with suitable cartridge or canister type filters to remove various categories of toxic vapours. Reference should be made to AS/NZS 1715 and AS/NZS 1716 for information on the various categories of gas filter and the degree of protection provided by each

(g) Combined particulate and gas respirators – these may be half or full-face respirators fitted with suitable combination type filters to remove both particulates and defined categories of gases and vapours

None of the respirators referred to in (e), (f) and (g) supply oxygen and therefore must not be used in locations where an oxygen deficiency may be present, e.g. in confined spaces. Atmospheres should be checked for oxygen content as well as to ensure that they are not flammable or explosive.

(h) Air-supplied welding helmets – these must incorporate a positive pressure hood of full-face fresh air stream (Figure 19.6). Do not use a perforated airline inside an ordinary face shield/welding helmet. Such equipment entrains increased quantities of harmful fumes into the breathing zone.

19.6.3 Selection of Equipment

The following factors should be considered when selecting respiratory protection devices:

(a) Only equipment that conforms to AS/NZS 1716 should be used

(b) It is strongly advised that expert assistance be sought in selecting respiratory protective devices appropriate to the intended service. Such advice may be sought from local WHS Authorities, occupational hygienists or physicians. In some states, legislation requires personal protective equipment to be of an approved type

(c) Where filter type devices are used, particular care is required in selecting appropriate filtering systems. They must be capable of removing a range of particulates and gases and maintain adequate permeability to air so that breathing does not become difficult

(d) To be effective, respiratory devices must closely fit the user’s face. Beards, moustaches etc. will interfere with the closeness of fit. Fit testing as described in AS/NZS 1715 is needed to ensure a satisfactory fit is achieved

(e) In atmospheres immediately hazardous to life, self-contained breathing apparatus is preferred to airline respirators

(f) Airline respirators may only be used in atmospheres immediately hazardous to life if fitted with escape type SCBA for use in event of failure of the airline or compressor

(g) In areas containing toxic fumes or dusts not immediately hazardous to life, follow the recommendations of AS/NZS 1715 to determine the correct respirators required to achieve sufficient protection
Table 19.1 Minimum Personal Protective Equipment for Various Welding and Allied Processes (Notes 1, 2)

<table>
<thead>
<tr>
<th>Process Hazard Personal Protection (Note 3)</th>
<th>Hazard</th>
<th>Personal Protection (Note 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flame cutting</td>
<td>Radiation Burns (heat)</td>
<td>Goggles with appropriate filters (Table 19.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adequate clothing (19.4.2) gloves (19.4.3) and footwear (19.4.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suitable head protection for overhead welding (19.4.1 & 19.4.2)</td>
</tr>
<tr>
<td>Gas Welding</td>
<td>Radiation Burns</td>
<td>Goggles with appropriate filters (Table 19.2), gloves (19.4.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adequate clothing (19.4.2)</td>
</tr>
<tr>
<td>Plasma Cutting (Power source)</td>
<td>Radiation Burns (heat)</td>
<td>Full face protection shield with filters (19.3.2 & Table 19.2)</td>
</tr>
<tr>
<td></td>
<td>Noise</td>
<td>Adequate clothing (19.4.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ear protection (Chapter 18)</td>
</tr>
<tr>
<td>Air-arc Gouging / Cutting</td>
<td>Radiation Burns</td>
<td>Goggles with appropriate filters (Table 19.2), Adequate clothing</td>
</tr>
<tr>
<td></td>
<td>Electric Shock</td>
<td>(19.4.2), gloves (19.4.3) and footwear (19.4.4)</td>
</tr>
<tr>
<td></td>
<td>Noise</td>
<td>Dry gloves, clothes and footwear</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ear protection (Chapter 18)</td>
</tr>
<tr>
<td>Arc Welding (Manual) (Note 4)</td>
<td>Radiation Burns</td>
<td>Full face protection shields with filters (19.3.2 & Table 19.2)</td>
</tr>
<tr>
<td></td>
<td>Electric Shock</td>
<td>Adequate clothing (19.4.2), gloves (19.4.3) and footwear (19.4.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dry gloves, clothes and footwear</td>
</tr>
<tr>
<td>Arc Welding (Mechanised) (Note 5)</td>
<td>Radiation Burns</td>
<td>Goggles with suitable protective filters (Table 19.2)</td>
</tr>
<tr>
<td></td>
<td>Electric Shock</td>
<td>Adequate clothing (19.4.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dry clothing etc.</td>
</tr>
<tr>
<td>Grinding</td>
<td>Hard Particles</td>
<td>Eye protection (goggles with lens, 19.3.3)</td>
</tr>
<tr>
<td></td>
<td>Noise</td>
<td>Adequate clothing (19.4.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ear protection (Chapter 18)</td>
</tr>
<tr>
<td>Chipping</td>
<td>Hard Particles (possibly hot)</td>
<td>Eye protection (goggles with lens 19.3.3)</td>
</tr>
<tr>
<td></td>
<td>Noise</td>
<td>Adequate clothing (19.4.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ear protection (Chapter 18)</td>
</tr>
</tbody>
</table>

NOTES:
1. Often, the particular circumstances in which the process is used may dictate the use of additional protective clothing to that listed
2. For protection against fume, see Table 17.1, 17.2 and Section 19.6 and Chapter 17
3. It is recommended that adequate protective footwear by used in all industrial applications (19.4.4)
4. Additional protection from burns, hot or molten particles will be required in overhead and some positional (e.g. vertical up) welding
5. Operator not adjacent to arc, e.g. submerged arc, electroslag, electrogas, fully automatic GMAW (MIG/MAG)
Table 19.2 Guidance on Selection and Use of Filters for Protection Against Optical Radiation Generated During Welding and Allied Processes

<table>
<thead>
<tr>
<th>Process</th>
<th>Approx. Range of Welding Current (AMPS)</th>
<th>Filter Recommended (Notes 1, 2, 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual Metal Arc Welding – covered electrodes (MMAW)</td>
<td>Up to 100</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>100-200</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>200-300</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>300-400</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Over 400</td>
<td>13</td>
</tr>
<tr>
<td>Gas Tungsten Arc Welding (GTAW) – (TIG)</td>
<td>Up to 100</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>100-200</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>200-250</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>250-350</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Over 350</td>
<td>14</td>
</tr>
<tr>
<td>Gas Metal Arc Welding (GMAW) (MIG/MAG) (Note 4)</td>
<td>Up to 250</td>
<td>12</td>
</tr>
<tr>
<td>Aluminium and Stainless Steel</td>
<td>250-350 (Note 3)</td>
<td>13</td>
</tr>
<tr>
<td>Other than Aluminium and Stainless Steel</td>
<td>Up to 150</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>150-250 (Note 3)</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>250-300 (Note 3)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>300-400 (Note 3)</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Over 400</td>
<td>14</td>
</tr>
<tr>
<td>Flux-Cored Arc Welding (FCAW) (Note 4) - With or without shielding gas</td>
<td>Up to 300 (Note 3)</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>300-400 (Note 3)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>400-500 (Note 3)</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Over 500</td>
<td>14</td>
</tr>
<tr>
<td>Plasma Arc Welding, Cutting & Spraying (PAW) and Wire-Arc Spraying (Note 5)</td>
<td>50-100</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>100-200</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>200-300</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>300-400</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>400 and over</td>
<td>14</td>
</tr>
<tr>
<td>Air-arc Gouging (Note 4)</td>
<td>Up to 400</td>
<td>12</td>
</tr>
<tr>
<td>Gas Welding – Low heat input</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>– Light fusion welds</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>– Heavy fusion welds</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Wire Flame Spraying – Except Molybdenum – Molybdenum</td>
<td></td>
<td>2-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-6</td>
</tr>
<tr>
<td>Flame Cutting and Gouging – Light</td>
<td></td>
<td>4 (Note 8)</td>
</tr>
<tr>
<td>– Medium</td>
<td></td>
<td>5 (Note 8)</td>
</tr>
<tr>
<td>– Heavy-close</td>
<td></td>
<td>6 (Note 8)</td>
</tr>
<tr>
<td>Aluminothermic Submerged Arc & Electroslag Welders Assistant</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 (Note 7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 (Note 8)</td>
</tr>
</tbody>
</table>

NOTES:
1. The shade numbers are minimum. If any discomfort is felt, higher shade numbers, i.e. darker filters should be used.
2. If the surface temperature of the filter rises above 100°C, e.g. when welding preheated sections in a confined space, filters of solid glass or glass laminates with dyed inserts should be used.
3. These processes give off a higher proportion of infrared radiation than others that gives rise to an uncomfortable increase in filter temperature. An auxiliary heat-absorbing filter should be placed between the cover glass and filter glass.
4. Where these processes are fully automatic, shade 3 filters may be used.
5. The appropriate filter should be used for close examination.
6. When these processes are provided with their own shield, lighter eye protection filters may be used. Australian Standards covering eye protection (AS/NZS 1336, AS/NZS 1337 and AS/NZS 1338) should be observed.
7. A darker filter (shade 5) may be required to closely watch the molten pool in electroslag welding.
8. Tinted safety glasses and sunglasses are typically a shade 3 and this is inadequate for cutting and gouging. Shade 3 is considered to be a minimum requirement for a welder’s assistant at some distance and not directly observing the operation. Risk assessment may indicate a higher shade is necessary.
WELDING AND CUTTING IN CONFINED SPACES

20.1 Introduction
Working in a confined space is controlled by government regulation and in accordance with Australian Standard AS 2865.

20.1.1 Identifying a Confined Space
An enclosed or partially enclosed space that is not intended or designed primarily for human occupancy, within which there is a risk of one or more of the following:
(a) An oxygen concentration outside the safe oxygen range\(^{73}\)
(b) A concentration of airborne contaminant that may cause impairment, loss of consciousness or asphyxiation
(c) A concentration of flammable airborne contaminant that may cause injury from fire or explosion
(d) Engulfment in a stored free-flowing solid or a rising level of liquid that may cause suffocation or drowning

NOTES:
(a) Enclosed or partially enclosed spaces that may meet the definition criteria for a confined space are:
 (i) Storage tanks, tank cars, process vessels, boilers, pressure vessels, silos and other tanklike compartments
 (ii) Pipes, sewers, shafts, degreaser and sullage pits, ducts and similar structures, and
 (iii) Any shipboard spaces entered through a small hatchway or entry point, cargo tanks, cellular double bottom tanks, duct keels, ballast and oil tanks, and void spaces
(b) A confined space may or may not have restricted means of entry and exit. Appropriately sized entry and exit points are important for the safe entry and exit or retrieval of a person(s) in an emergency. However, a restricted means of entry or exit is not a consideration in identifying an enclosed or partially enclosed space as a confined space
(c) Most enclosed or partially enclosed spaces are intended or designed primarily for human occupancy, e.g. offices and workshops where adequate ventilation and lighting, safe means of access and egress, etc. are provided. From time to time they may have atmospheric hazards produced by task-related activities such as welding. Such task-related hazards are not covered by this Standard and other safety systems apply
(d) Some enclosed or partially enclosed spaces have atmospheric contaminants that are harmful to persons but are designed for persons to occupy, e.g. abrasive blasting or spray painting booths. Enclosed or partially enclosed spaces that are intended or designed primarily for human occupation and have systems such as gaseous fire extinguishing systems (See AS 4214 or inert gas systems for beverage dispensing (See AS 5034) installed, are not confined spaces. In such cases, other safety systems such as relevant legislation, Standards or Codes of Practice apply
(c) A rising level of a liquid in an enclosed or partially enclosed space may cause engulfment through the inability of a person to readily exit the space. Drowning in a reservoir, dam or tank where the level of liquid is static is not considered to be drowning from engulfment

Refer to AS 2865 – 2009 Clause 1.5.5.

20.1.2 Atmospheric Hazards and Engulfment Hazards of Confined Spaces
Confined spaces can present a risk from atmospheric hazards or engulfment. These may include the following:\(^{74}\)
(a) Oxygen concentration in the atmosphere below 19.5% in the confined space, which may be caused by:
 (i) Slow oxidation reactions of either organic or inorganic substances e.g. rusting
 (ii) Rapid oxidation, e.g. a fire
 (iii) Displacement of oxygen in the atmosphere by other gases, or
 (iv) Absorption by stored substances
(b) Oxygen enriched atmospheres, with oxygen concentration greater than 23.5% by volume. Atmospheres

\(^{73}\) AS 2865 – 2009 defines the safe oxygen range as “A concentration of oxygen in the atmosphere having a minimum of 19.5% by volume and a maximum of 23.5% by volume, under normal atmospheric conditions”

\(^{74}\) Refer to AS 2865 – 2009 Clause 3.1.2
with oxygen enrichment have an increased risk of fire or explosion, particularly when flammable contaminants are present. Causes of oxygen enriched atmospheres in confined spaces include:

(i) Inadvertent purging with oxygen
(ii) Oxygen injection systems (used in sewerage systems), or
(iii) Using a cutting process such as oxy acetylene which can rapidly increase the oxygen content

(c) The presence of contaminants in the atmosphere or on surfaces. The sources of contaminants encountered may include:

(i) The manufacturing process
(ii) The substance stored or its by-products (e.g. petroleum products, or disturbing decomposed organic material that may liberate toxic substances such as hydrogen sulphide), or
(iii) Hazardous services connected to the confined space

(d) Free-flowing solids stored in the confined space e.g. grain, sugar, flour, sand, coal or fertilizer

(e) An increase in the level of a liquid in the confined space

20.1.3 Task-Related Hazards And Other Occupational Hazards

The tasks a person is required to conduct may expose them to risks from the hazards associated with the occupational environment and the task(s) being conducted. These task-related hazards may include the following:

(a) A reduction in the oxygen concentration in the atmosphere to below 19.5% by volume in the confined space. This may be caused by fire or respiration. The use of air-LPG burners for preheating will rapidly deplete oxygen

(b) Oxygen enriched atmospheres with oxygen concentration greater than 23.5% by volume, which may be caused by:

(i) A leaking oxygen hose or fitting when using oxy-acetylene equipment, or
(ii) The use of chemicals that release oxygen e.g. hydrogen peroxide
(iii) Using a cutting process such as oxy acetylene which can rapidly increase the oxygen content

(c) Airborne contaminants, e.g. dust, fibres, and lead or mercury fumes

(d) Inability to maintain continuous communication and/or observation between those in the confined space and the stand-by person(s), or other systems of work methods and controls provided for an equal or better safety outcome

(e) Noise e.g. that caused by hammering or the use of equipment within the confined space

(f) Temperature (either high or low) resulting from the occupational environment or the weather conditions, or where appropriate ventilation is not provided or appropriate clothing is not worn. This is of particular concern when carrying out hot-work which requires and generates heat

(g) Radiation within the confined space e.g. from X-rays, radiation gauges, isotopes, lasers and welding equipment

(h) Manual handling

(i) Unsafe entry and exit or unsafe surfaces

(j) Inadequate lighting

(k) Restricted entry or exit

(l) Openings obstructed by fittings or equipment that could impede rescue

(m) Entrapment from the operation of moving equipment e.g. being trapped by augers, or crushed by rotating or moving parts such as conveyor belts

(n) The tasks conducted in the confined space e.g. painting with coatings containing toxic or flammable contaminants, welding or brazing with metals capable of producing toxic fumes

(o) Exposed live electrical conductors

Particular attention should be given to the task-related hazards created by a work team(s) in, on or near the confined space that may affect other work team(s) within the confined space.76

Many confined spaces are also electrically hazardous environments, in which case the requirements of Section 14.6 or 14.7 apply. If confined spaces are hot and humid, the requirements of Section 23 also apply.

When working in confined spaces or under cramped conditions, the precautions required during normal welding require additional attention. For example, additional care is required in respect of hazardous atmospheres where flammable, toxic or asphyxiating gases may be encountered.77 Always check the previous contents of the confined space when flammable, explosive or toxic materials are suspected. Always check that oxygen has not been depleted by excessive rusting of steel or snowflake corrosion of aluminium. Always check that explosive, toxic or oxygen-displacing gases do not build up due to leakage etc.

20.2 Supervision, Permits and Precautions

(a) Permits - in all circumstances where such welding is required, a responsible person such as a safety officer should supervise the preparations for work and issue suitable permits. A risk assessment must be undertaken to identify all hazards, assess the risks and put controls in place before issue of a permit

(b) Testing - the atmosphere and any materials present in a confined space should be examined and if nec-
essary tested in respect of toxicity and flammability before working. (Where required, the cleaning and safe working procedures given in Chapter 21 should be carried out i.e. where the contents or previous contents are known or suspected to be flammable, explosive or toxic.)

20.3 Ventilation, Shading and Thermal Insulation

20.3.1 Ventilation
The following points should be noted:
(a) Local exhaust ventilation is a prerequisite in confined space welding and cutting
(b) The specific type of ventilation depends essentially on the size of the confined space and welding process being carried out and required cooling
(c) All air, replacing that withdrawn, must be clean and respirable
(d) Oxygen or oxygen-enriched gases must never be used for ventilation
(e) If it is impracticable to provide adequate ventilation, suitable air supplied personal respiratory protection (See Section 19.6) should be used

20.3.2 Shading
In a confined space or vessel in sunshine, shading (tarpaulins etc.) should be used to reduce heat stress (Section 23.2).

20.3.3 Thermal Insulation
If preheat is needed, insulate all heated parts not being welded to reduce heating of airspace occupied by welder and to reduce risk of burns. This insulation must not break down to give toxic fumes. Additional ventilation may be needed to cool personnel.

20.4 Atmospheric Testing and Monitoring
Atmospheric testing should include testing by calibrated and well maintained instruments:
(a) Oxygen concentration
(b) Concentration of flammable airborne contaminants, and
(c) Concentration of airborne contaminants

Refer to AS 2865 Section 3 and AS 2865 Appendix I for detailed guidance on implementation of confined space management.

20.4.1 Gas Monitors
Gas monitors used for the purpose of atmospheric monitoring within a confined space should be maintained and used in accordance with the manufacturer’s instructions and warnings.78

20.4.2 Challenge Testing
Gas monitors should be challenge tested79 on a routine basis using premixed calibration gases to ensure their accuracy and sensitivity across the range of use. Detectors can become contaminated (“poisoned”) leading to potential errors in readings.

20.5 Electric Shock
Because of the cramped conditions and probability of the welder sweating excessively, the risk of electric shock is greatly increased and deaths have occurred in these conditions in Australia.80 In addition to the normal safe operating procedures outlined in Section 14, the following measures should be taken:
(a) Power sources are to be left outside the confined working space and should preferably be d.c.
(b) Power supply hazard reducing devices that eliminate or restrict the no-load voltages to a value as low as practicable should be used
(c) Electrical connection to electrodes, work and equipment should be fully insulated and thoroughly checked
(d) Means for cutting off power to the welding unit should be installed and readily accessible
(e) Insulating mats or layers of a suitable material to insulate the welder from the walls of the vessel should be provided (Figure 20.1)
(f) Electrical lighting in the confined space must be of low voltage (32 volts) and other electrical equipment (e.g. grinders) must be fully or double insulated and in good condition with heavy-duty cables. Preference should be given to pneumatic equipment

78. Refer to AS/NZS 60079.0 and AS/NZS 60079.11.
79. Challenge testing requires the instrument to correctly determine the concentration of a premixed “calibration gas” at appropriate concentration close to the value being measured.
80. WTIA recommends that all electric welding in confined spaces be managed in accordance with the requirements of AS 1674.2 Category C environments.
(g) High frequency should not be used in confined spaces because ordinary insulation is ineffective against high frequency.

20.6 Flame Cutting, Welding or Preheating

Where gases are required for cutting, welding or preheating, precautions are required to ensure a build-up of toxic or flammable gases cannot occur. The following precautions should be observed:

(a) Gas cylinders are to be kept away from the working area and preferably outside the confined space.
(b) Blowpipes should be lit outside to avoid gas and heat build-up inside the confined space.
(c) Torches and pressure hosing connected to the supply are not to be left inside the working area when not in use. Very slow leaks of oxygen or fuel gas can allow an explosive atmosphere to build up rapidly.
(d) Gas cutting may result in a build-up of oxygen level due to only a small portion of the oxygen being used in the cutting operation. Ventilation is required to ensure that the oxygen levels do not increase.
(e) Preheating using a gas flame that is not supported by oxygen, such as a naturally aspirated LPG flame, will rapidly deplete the oxygen level in a small confined space. Ventilation is required to ensure that the oxygen levels do not decrease.
(f) Build-up of asphyxiant gases will accompany any gas cutting or heating activity carried out in a confined space. Ventilation is required to ensure that the asphyxiant gas levels do not increase.

20.7 The Welder

Working under confined space conditions increases the fatigue experienced by the welder and can therefore reduce his concentration level. This situation is more serious in hot conditions that can arise from either preheating or build-up of heat during welding. Additional care in selection of working clothing and protective clothing is required (See also Chapter 19).

(a) Flame resistant protective clothing e.g. wool is required to be worn.
(b) Clothing soiled with readily combustible materials such as oil or grease, should not be worn.
(c) Gauntlet gloves in good condition without metal rivets should be worn. They should be of flame resistant material and be kept dry.
(d) Footwear should be robust, watertight and of the non-nailed type. Steel toe caps are recommended, but metal should not be exposed.
(e) Protection from reflected radiation from the walls of the vessel is required to prevent burns to the back of the neck.

(f) Rest periods should be allowed for. This may be achieved by using several welders in turn.
(g) Special provision will be required where very hot conditions are experienced (See Chapter 23.)

20.8 Emergency Removal of Personnel from Confined Space

Where access to the confined space is limited, e.g. through a manhole, provisions are required to be made to allow rapid removal of the welder in an emergency.

(a) Safety harnesses with lifelines are recommended and are a legal requirement in some instances. Care is required to ensure the welder’s body will not jam in small exits.
(b) A helper or observer with a pre-planned rescue procedure and suitable training should be stationed outside to observe the welder at all times and to be capable of putting rescue operations into effect.
(c) The observer must be aware that an unprotected person must not enter a space where another person has collapsed before taking appropriate precautions.

20.9 Typical Check List

The following sequence of checks is recommended for confined space work:

(a) Pre-Entry
 (i) Work selection
 (ii) Worker training – AS 2865 Section 11
 (iii) Responsibilities of responsible person
 (iv) Recognition of potential hazards

(b) Entry
 (i) Isolation of confined space
 (ii) Precautions at entrance to confined space
 (iii) Initial testing and recording of confined space atmosphere
 (iv) Comparison of initial test results to establish ventilation or personal protection
 (v) Ventilation and provide personal protective equipment

(c) During Entry
 (i) Continuous or period monitoring of confined space atmosphere
 (ii) Assure safe workplace practice is followed

(d) After Entry
 (i) Re-issue permit after prolonged absence if conditions change
 (ii) Confirm that all persons and equipment are accounted for
 (iii) Review the operation and comment on unsatisfactory aspects
 (iv) Acceptance of completed job

81. Refer APPENDIX F for a typical form for a Confined Space Entry Permit
WELDING OR CUTTING IN OR ON CONTAINERS

21.1 Introduction
For the purposes of this chapter a container includes any piping, vats, tanks, drums, vessels. Welding or cutting in or on or near containers may present hazards not commonly encountered in welding or cutting operations. For example, hazards could arise from the flammability, toxicity and explosive characteristics of contained liquids, gases or solids or from their release. Welding of components under internal pressure also poses obvious hazards to the operator and those in the vicinity (See Chapter 22).

Where containers are known or suspected to have contained flammable or toxic substances, the provisions of Section 21.3 must be carried out prior to welding.

Where the work represents a confined space situation, the provisions of Chapter 20 are to be adhered to.

The requirements of AS1674.1 should be met.

21.2 Supervision and Approval

21.2.1 Permits
(a) In all situations where such work is to be carried out, a responsible person such as a safety officer should supervise all preparations for the work and issue the necessary work permits
(b) Permits need to be issued in the following circumstances:
(i) To carry out hot-work on the outside of a container, large or small
(ii) To enter the confined space of a vessel i.e. requiring a gas free permit
(iii) To carry out hot or cold work inside a vessel

21.2.2 Gas Freeing Area
Unless a building has been designed and approved for such work, all “gas freeing” must be performed outdoors, remote from all sources of ignition (in the case of combustibles) or sufficiently isolated to protect personnel in the immediate vicinity. The following points should be noted:
(a) Gas freeing areas should be clearly identified
(b) The container should be positioned where vapours will not drift indoors, towards sources of ignition (in the case of combustibles) or endanger personnel in the case of toxic or asphyxiating gases
(c) Many vapours are heavier than air and will accumulate in low areas
(d) Safe distances need to be established from sources of ignition in the case of combustibles and air contamination requirements in the case of toxic gases, etc.
(e) Where water or steam is used, the work area must have a sealed area complying with statutory and environmental requirements
(f) Gas free status atmospheres for safe entry must be checked by instruments that are used by experienced and qualified personnel. Unless skilled personnel are used, there is a likelihood of dangerous consequences due to malfunctioning of the instrument

21.2.3 Other Considerations
(a) Identification of contained materials or previously contained materials and assurance that safe conditions apply is required prior to issuing of work permits (See Chapter 20 and Section 21.3)
(b) Fire precautions outlined in Chapter 16 should be adhered to even if the relevant precautions noted in Section 21.3 have been carried out
(c) Interruptions to work that involve a reasonable elapsed time require an assessment of the conditions to ensure that it is safe to recommence work

21.3 Welding or Cutting Containers That Have Held Combustibles

21.3.1 Introduction
The obvious hazard associated with welding or cutting containers that have at any time contained combustible liquids or gases is the risk of explosion or fire. Additionally, precautions are required where the contained material is such that a toxic gas or dust could be released or formed during cleaning, purging or welding or cutting operations.

The following provides basic guidance in identification and avoidance of possible hazardous situations. More detailed information is provided in References 27 and 28.
21.3.2 Identification of Hazard

It is important to identify completely the type of liquid, gas or other flammable material that has been, or remains, in the container. This provides assistance in determining appropriate means of avoiding fire, explosion or other health risks. The more common hazardous situations are noted below:

(a) If the previous contents of a container to be worked on are unknown, it should be treated as containing a combustible toxic substance however long it may have remained empty

(b) Petroleum products and other volatile liquids release vapours at atmospheric pressure that may remain after a container is emptied particularly in lapped or fillet welded joints

(c) Containers that have contained plastic products, heavy oils or tars or have been coated inside or outside with plastic or paint may fill with explosive vapours when the metal is heated by welding, cutting etc. The welding or cutting may then provide the spark that sets off an explosion

(d) Hydrogen may be present in metal containers that have held an acid, due to reaction between the metal and acid

(e) Deposits of sludge, scale, traces of gum, resin, varnish, bitumen or similar non-volatile oils or solids may release flammable or explosive gases when heated in welding or cutting operations

(f) Explosive conditions may exist if a container has held a flammable or explosive solid and finely divided particles of this matter are present in the form of dust. Examples are wheat silos or coal storage bins (See Section 16.3)

21.3.3 Basic Precautions

The following lists the basic precautions to be met when welding or cutting on containers that hold or have previously held combustibles.

(a) Appropriate chemical analysis carried out by qualified personnel should be used to identify any doubtful situations. Even small amounts of residual gas-forming substances can cause a serious explosion

(b) Sight or smell cannot be used to determine if safe working conditions apply and could prove fatal through the inhalation of toxic vapours

(c) Cutting, welding or heating should only be carried out by experienced welders directly supervised by a person who fully understands the hazards involved

(d) Cleaning by methods appropriate to the size of the container and nature of its contents is required prior to cutting or welding except where the hazard can be avoided by other methods (See Section 21.3.4)

(e) Ventilation during cleaning should be such that any flammable gases are quickly and safely dispersed. Open air cleaning is preferred

(f) Ignition sources listed below can be dangerous:
 (i) Flame or arc from welding and cutting, hot metal, smoking, matches or a lighter
 (ii) Electrical discharge from equipment not approved for hazardous areas
 (iii) Defective electrical equipment
 (iv) Portable equipment (electrical)
 (v) Hot engine exhaust
 (vi) Friction or impact sparks (grinding or abrasive disk cutting)
 (vii) Spontaneous combustion (oily rags)
 (viii) Auto ignition from vehicle
 (ix) Static electricity including discharge for synthetic clothing or footwear
 (x) Lighting – electrical

(g) Chisels, hammers etc. made of steel should not be used for cleaning or scraping of residues as sparks can be generated and ignite gases. Wooden or bronze mallets and scrapers of non-sparking material are preferred e.g. copper beryllium tools

(h) Internal piping, baffles, trays etc. should, where possible, be removed and drained to facilitate cleaning

(i) Residue removed from containers should immediately be stored in a safe place

(j) Compartments within a container should all be treated in the same manner, even if only a localised portion of the container is to be worked on

(k) Rendering of materials to a non-explosive or non-flammable condition may, under certain circumstances, provide an alternative to cleaning (See Section 21.3.6)

(l) Solvents may in themselves constitute a hazard in a welding environment and advice should be sought before their use

(m) Washing with either hot or cold water is not generally an acceptable method of cleaning as many materials are not soluble in water. Exceptions are noted in Section 21.3.4

(n) Waste material should be disposed of safely

21.3.4 Cleaning Procedures for Small Containers

There are a number of methods in common use for the cleaning of small containers.83 Brief details are given below and more complete information can be found in Reference 28.

21.3.4.1 Water Washing and Rinsing

(a) Application – only suitable for substances known to be readily soluble in water; e.g. acids, caustic, acetone, alcohol

(b) Basis – water soluble contaminants are rendered safe by dilution in water
(c) Method – complete filling and draining of containers a number of times with appropriate testing of the drained liquid

(d) Caution – dilute acids frequently react with metals to produce hydrogen when concentrated acids will not. All traces of acid must therefore be removed by repeated flushing

21.3.4.2 Hot Chemical Solutions

(a) Application – suitable for containers that are not entered by workmen and that have contained petrol, domestic heating oils and other light petroleum by-products

(b) Basis – hot chemical solutions emulsify contaminants so they can be removed by water rinsing

(c) Method – a two-stage cleaning process is generally used that involves thorough flushing of the container with water to remove any remaining sludge, scum or liquid followed by cleaning with a hot solution of detergent. The cleaning procedure involves:

(i) Dissolve chemicals in small quantities of boiling water and pour into container. Typical chemicals used are sodium silicate or trisodium phosphate; the amount required being determined by the size of the container

(ii) Fill container with fresh water

(iii) Make a steam connection either to a separate drain connection at the bottom of the container or by a pipe through the filling connection or vent and leading to the bottom of the container

(iv) Maintain solution at 75 to 90°C

(v) During steaming, add sufficient water at intervals to allow discharge and continue steaming until the overflow is clear

(vi) Drain container and carry out an appropriate gas test before issuing work permits

(d) Caution – Personnel should guard against injury from either steam or caustic cleaning compounds by wearing suitable protective clothing. The chemicals used in cleaning should be such that corrosion of the container cannot occur

21.3.4.3 Steaming

(a) Application – as for hot chemical method.

(b) Basis – steaming provides heat to vaporise and remove contaminants.

(c) Method

(i) Where practicable, the inside surfaces should be flushed with a 25% caustic solution and the container thoroughly drained prior to steaming

(ii) For containers with two openings, live steam should be blown through the drainage hole. When the container has only one opening it should be positioned so that condensed steam can drain away whilst steaming continues

(iii) Low Pressure should not be used as this will not provide sufficient cleaning action. Steam pressure should be controlled by a valve positioned at the head of the filling hose, or pipe. The arrangement must not be able to over-pressurise the container

(iv) Continue steaming until the container is free of odours and sufficiently hot to allow steam to freely flow out of the container vent and all parts of the container are hot

(v) Flush container with boiling water and drain

(vi) Inspect the inside of the container to ensure it is clean. This may require the use of mirrors to reflect light into the container

(vii) Carry out appropriate gas tests before issuing work permits

(viii) Figure 21.1 illustrates suitable arrangements for steam cleaning methods

(d) Caution – metal nozzles on the steam line should be non-sparking types to prevent accidental ignition of flammable gases. Metal nozzles should be electrically bonded to the container and the container also grounded to prevent a build-up of static electricity. Protective clothing including that necessary to protect the operator’s head and hands is required in steam cleaning. Any light sources used for inspection purposes should be of a type approved for use where flammable vapours are present

Figure 21.1 Arrangements for Steam Cleaning a Container

21.3.5 Water Filling Treatment

(a) Application – it is advisable to use either this method or the inert gas treatment (Section 21.3.6) to supplement the cleaning methods described. Dependent upon the contents of the container and if the container is in a non-hazardous location, it may be approved as the sole method required before commencing hot-work

(b) Basis – water is used to reduce the vapour space to a minimum. There may still be flammable vapours within the space but the volume of gas has been reduced as much as practicable. Inert gas is then introduced into the remaining space to displace the remaining air and eliminate all oxygen

(c) Method – the container is filled with water to within a few centimetres of where welding or cutting is to be carried out (Figure 21.2). Vents or openings are required to allow the release of heated air or vapour from the container

(d) Caution – approval of this method as a single means of protection requires written approval of a responsible officer
21.3.6 Non-Flammable Gas Purging – Inerting

(a) Application – as for water filling treatment (See 21.3.5 above).

(b) Basis – use of this method requires that flammable gases and vapours are rendered safe within the container by diluting them sufficiently with a non-flammable gas. The aim is to reduce the oxygen concentration to well below the minimum oxygen level necessary to support combustion, known as the limiting oxygen concentration (LOC) or minimum oxygen concentration (MOC). When the oxygen concentration is well below the LOC, flammable gas or fuel vapour can be safely generated by hot-work on the container because the possibility of internal explosion has been eliminated.

(c) Suitable gases – carbon dioxide added as dry ice or in gas form and nitrogen are the most commonly used inerting gases. Oxygen or mixtures thereof are dangerous. Shielding gases based on argon and carbon dioxide (possibly with up to 2.5 % O_2) commonly used in welding are usually suitable for inerting a space and may be used for convenience.

(d) Method

(i) The only openings in the container should be a drain and a vent

(ii) The container should be drained. If this is not practicable, the fluid level should be lowered to well below the area to be worked on

(iii) Where possible, the portion of the container to be worked on should be uppermost

(iv) Introduce inert gas in the amount required. A person who has thorough knowledge of this type of work must be responsible for the determination of the correct amount. Figure 21.3 (a), (b) illustrates a typical arrangement for introduction of an inert gas. Ensure there is sufficient inert gas on hand to continue purging until the hot-work is completed and the container is fully cooled.

(v) Tests of the contained gas must be carried out prior to and during work where extended work periods are required. A person who has thorough knowledge of this type of work must control continuous atmospheric monitoring of the concentration of oxygen within the container during the initial inerting and throughout the duration of the hot-work

(vi) The target oxygen level must be below the LOC for the gases or vapours that could be present in the container. Refer Table 21.1 for guidance on LOC for a number of flammable substances.

(e) Caution – where solid carbon dioxide (dry ice) is used, protection is required to avoid bodily contact, as “burns” will result. Where solid carbon dioxide is used, openings should be fitted with non-return valves to prevent undue loss of gas or excessive pressure building up. Analysis of contained gas immediately before and during hot-work is essential as hot-work may release dangerous vapours. Gases emitting from the inerted container must be ducted away to a safe gas freeing area.

21.3.7 Large Vessels, Tanks etc.

(a) Method – essentially as described for small containers although of course on a very much larger scale

(b) Caution – particular care is required where work is required to be carried out inside a container where there is a risk of the atmosphere being flammable, toxic or both.

Table 21.1 Typical Values of LFL (Air), UFL (Air), LOC (n-Air) and LOC (CO$_2$-Air)

<table>
<thead>
<tr>
<th>Flammable Substance</th>
<th>LFL (Air)</th>
<th>UFL (Air)</th>
<th>LOC (n-Air)</th>
<th>LOC (CO$_2$-Air)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>4.0</td>
<td>75.0</td>
<td>5.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>12.5</td>
<td>74.2</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>Methane</td>
<td>5.0</td>
<td>15.0</td>
<td>12.0</td>
<td>14.5</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>4.5</td>
<td>15.0</td>
<td>12.0</td>
<td>14.5</td>
</tr>
<tr>
<td>Propane</td>
<td>2.1</td>
<td>9.5</td>
<td>11.5</td>
<td>14.0</td>
</tr>
<tr>
<td>Butane</td>
<td>1.6</td>
<td>8.4</td>
<td>12.0</td>
<td>14.5</td>
</tr>
<tr>
<td>Petrol</td>
<td>1.4</td>
<td>7.6</td>
<td>12.0</td>
<td>14.5</td>
</tr>
<tr>
<td>Kerosene</td>
<td>0.7</td>
<td>4.8</td>
<td>11.0</td>
<td>13.0</td>
</tr>
</tbody>
</table>

84. Lower explosive limit (LEL) and lower flammable limit (LFL) for any flammable species depends on the oxygen concentration

85. Limiting oxygen concentration, (LOC), also known as the minimum oxygen concentration, (MOC), is defined as the limiting concentration of oxygen below which combustion of a particular flammable species is not possible, independent of the concentration of fuel. It is expressed in units of volume percent of oxygen. The LOC varies with pressure and temperature. It is also dependent on the type of inert (non-flammable) gas

86. Argon based shielding gases may be readily available and accessible in a welding workshop, however they will generally be more expensive than alternatives such as nitrogen or carbon dioxide

87. In many industries an LOC of 2% is used, which is 40% of the LOC for hydrogen, since hydrogen has the lowest LOC value of any flammable substances.

88. Gas detectors must be suitable for monitoring oxygen at the target concentration.
No welder should be required to enter such a vessel or tank until it has been certified to be:

(i) Safe for entry
(ii) Safe to work in with an arc, flame or any ignition source

The precautions applicable to welding in confined spaces apply to this situation.

21.4 Welding on Containers and Piping
Under Internal Pressure

See Chapter 22.

21.5 Welding on Closed Sections

On any occasion when hot-work is contemplated on a closed section a thorough hazard identification and risk assessment should be carried out. A number of quite serious incidents have resulted from hot-work being carried out on closed sections that created a fire or explosion. The fuel has been:

(a) Hydrocarbons such as lubricating or hydraulic fluids that have seeped into the space due to cracking
(b) Hydrogen evolved by bacterial action on moist and/or rusty steel ballast within a closed space
(c) Hydrogen and carbon monoxide gas produced from incomplete combustion of a preheating flame

In all cases there was no expectation that there was anything flammable on the other side of the metal where the hot-work was being carried out.

21.5.1 Purging with Inert Gas

Before commencing hot-work on a closed space it is recommended that openings be made at the upper and lower extremities of the space to enable venting to the atmosphere and purging the space with inert gas. New equipment such as box section booms should be supplied with purging holes, typically sealed with a removable screwed plug. Where there is no provision for purging and venting, the initial penetration of the space must be made with caution, as there may be flammable material on the other side.
Welding and Cutting on Pressurised Equipment

22.1 Introduction
This section gives a general overview of this topic and additional job safety and is recommended before performing this work safely.

Pressure vessels, pressure piping and pipelines often require to be welded whilst they are in operation.

Such welding operations commonly referred to on pressure piping and pipelines as hot tapping, require careful establishment of welding procedures and, in particular, techniques of welding that closely control heat input. Depending on material properties, wall thickness, contents, pressure, temperature and flow rate there is a distinct risk that metal in the vicinity of the weld will become softened allowing the pressure to cause bulging and possible bursting. Conversely, in the event of insufficient heat input there is a risk of developing hydrogen cracking in or adjacent to the welds. There may also be a possibility of internal explosion and or degrading of the contents.

Welding on vessels, piping and pipelines is a highly skilled operation requiring proven welding procedures and practices, trained welders, very strict controls and safety requirements particularly the control of heat input.

AS 2885 Pipelines – Gas and liquid petroleum has information relating to hot tapping. Certain conditions prevent the use of hot tapping operations and this is primarily dictated by pressure and the contents of the pipeline.

Some fluid contents could decompose under the heat input from welding to form explosive mixtures. A detailed knowledge of the fluid content and evaluation by a process expert (Chemical/Process Engineer) must be undertaken prior to commencement of any work.

The lining coatings and residues inside a pipe that will be affected by the heating operation could have a detrimental effect on the hot tap weld resulting in degradation in weld metal properties and cracking. Particular contents could break down under heat and hence the product could be affected.

22.2 Precautions
When welding on pressurised equipment such as boilers, pressure vessels, piping or pipelines (hot tapping), the following requirements apply:

(a) Conformance with appropriate statutory regulations (See Appendices A, B and C)
(b) Written specifications for safe procedures must be available and followed
(c) All work must be carried out under direct supervision of persons specifically responsible for such operations
(d) All operators must be competent, trained personnel who have been informed of the risks involved and the methods of avoiding problems
(e) In hot tapping, welding should be carried out in accordance with the requirements of AS/NZS 4645.2 Gas distribution networks – Steel pipe systems and AS 2885 (WTIA Technical Note 20 gives further information on this subject)
(f) For critical applications an appropriate documented risk assessment should be performed including justification for why the hot tap is essential and the means to fully control the risk
(g) The application of high intensity localised energy during hot-work procedures can generate dangerous volume changes and rapidly increasing pressures due to liquid to vapour and solid to vapour reactions

22.3 Procedures
The main points to be considered in establishing safe welding or cutting procedures are:

(a) Assessment of the thickness and integrity of the material in the area to be welded. This includes accurate knowledge of the material type
(b) Welding conditions must be such that the weld will not embrittle the parent metal and result in hot or cold cracking
(c) Welding conditions should be such that there is no risk of blowing through the pipe wall
23.1 Introduction

Adverse health effects occur when the human body is unable to dissipate heat at a satisfactory rate and core body temperature rises. International standards for working in hot conditions are aimed at keeping the core body temperature below 38°C since the risk of serious heat induced illness increases above that temperature. Heat is continuously produced within the body by metabolic processes in proportion to the rate of physical activity and this metabolic heat is usually the main contributor to raised body temperature. Hot working conditions also contribute to raised body temperature and are encountered with excessive exposure to the sun and when working with preheated steels or near furnaces. In some situations essential work may be done at preheat temperatures up to 250°C provided that work is carefully planned, an adequate risk assessment is done, appropriate personal protective equipment is used and an observer is constantly present. The ability to evaporate sweat is one of the main ways of regulating body temperature. Heat problems are exacerbated when working in heavy clothing or hot confined spaces.

23.2 Heat Stress

23.2.1 Effects of Heat Stress

The risk of heat stress increases as the body temperature rises above 38°C. Heat stress may:

(a) Cause discomfort
(b) Cause excessive sweating thus increasing the risk of electric shock
(c) Cause dehydration and exhaustion
(d) Reduce concentration
(e) Aggravate pre-existing medical conditions
(f) In extreme cases, cause heat shock that can be fatal

These effects can also distract attention from safe working procedures and contribute to accidents.

23.2.2 Contributing Factors

The major factors that contribute to heat stress are:

(a) Physical effort required and duration of work
(b) Ambient environmental temperature (indicated by dry bulb thermometer)
(c) Radiant temperature of the surroundings
(d) Relative humidity (indicated by wet bulb thermometer)
(e) Type of clothing worn
(f) Poor air movement
(g) Time of exposure

Indices of heat stress are complex and not universally applicable since individual workers vary greatly in their ability to perform work in hot conditions. Individual characteristics that affect heat-work tolerance include age, physical fitness, weight, medical conditions and acclimatisation. Therefore, whenever a heat stress situation is suspected or anticipated precautions should be taken. Work in hot conditions should be self-paced to accommodate individual workers’ abilities. When work is required in extreme heat conditions, the professional advice of an occupational physician or hygienist should be sought.

23.2.3 Minimising Heat Stress

Measures to minimise heat stress depend on reducing heat load, promoting the loss of body heat, maintaining adequate hydration and preventing adverse physiological effects. These measures include:

(a) Frequent rest periods to prevent fatigue – self-paced or based on international heat stress indices such as wet bulb globe thermometer temperature (WBGT)
(b) Replacing fluid loss due to sweat by taking frequent drinks of cool water. It should be noted that thirst is not a satisfactory indicator of adequate hydration. Salt tablets and electrolyte solutions are not recommended
(c) Suitable clothing for the task. A loose fitting, lightweight overall is preferred to minimise radiant heat input while permitting air movement and sweat evaporation. If heavy protective clothing or enclosed body suits are necessary for protection from very hot or toxic environments the ability to loose body heat is severely compromised and work rates and exposure time must be limited
(d) Adequate air movement by good general ventilation and spot cooling with cool air if indicated
(e) Shade should be provided for hot outdoor work whenever practicable (Sunshades)
(f) Heat radiation shields and insulation on preheated work
(g) Worker acclimatisation if extended periods in hot working conditions are experienced
(h) Administrative procedures such as scheduling strenuous work for the cooler parts of the day

23.3 Extreme Conditions with High Preheat in Confined Space

Whenever work is regularly required in extreme hot environments professional advice should be obtained whenever possible. Specialised heat resistant clothing, possibly air or water cooled, and very limited work periods under careful supervision and with rescue resources may be necessary.

The following example illustrates procedures that have been adopted in extreme hot-work situations. Work in this example was equivalent to welding inside an oven at 250°C (Reference 29).

(a) Radiant heat from the workpiece was minimised by applying mineral wool and ceramic fibre insulation to all visible heated surfaces except the area to be welded
(b) Aluminised material suits and lightweight helmets allowing freedom of movement provide excellent protection for the welder (Proprietary air cooled suits can be excessively bulky)
(c) Hand protection was achieved by wrapping in wet bandages and covering with conventional gauntlets
(d) The welder’s fresh air was provided by a perforated polythene tube attached to the inside of the heat resistant helmet. This was fed from a compressed air supply via filters and pressure regulators to a personal flow control valve fixed to the welder’s belt89
(e) A wheeled platform was used to push the welder into the confined space that would have greatly facilitated removal of the welder in case of an accident
(f) Two welders alternated at approximately 15-minute intervals
(g) An observer with appropriate rescue equipment present at all times

More commonly, welding on preheated manholes or nozzles is achieved by conventional welding equipment but with the preheated surfaces completely insulated by 100 mm of fibre insulation and large volumes of cooling air passed over the welder. Additional insulation may be needed under the welder’s feet.

23.4 Risk of Electrocution

Hot conditions increase the risk of electrocution because clothing and equipment may become soaked in perspiration. The risk is increased in closed environments, such as tanks or vessels, particularly when these are exposed to the sun’s heat. To minimise this risk:

(a) Take frequent rest periods, during that time dry off equipment and clothing
(b) Frequently change or alternate gloves and protective clothing to avoid perspiration accumulating. Keep clothing and equipment dry and free of damage
(c) Ventilate or air-condition the work area
(d) Cool the face with an air fed welding mask
(e) Use both welding gloves and sufficient appropriate protective clothing. Do not change electrodes with bare, perspiring hands. Do not expose skin to keep cool
(f) Use a voltage-reducing device used as described in 14.6

(g) If clothing becomes saturated with perspiration, it must be changed. The need for a changing room and fresh clothing must be anticipated
(h) Implement confined space working procedures when indicated

Refer to AS 1674.2. Hot or humid conditions usually require precautions necessary for Category C environments. Category C should be the default position unless extraordinary measures have been implemented to ensure Category B or Category A conditions are maintained.

Refer to Chapter 4, and WTIA Technical Note 22, Chapter 14.

89. This system cannot be used where problems due to fume inhalation can occur. See Section 19.6.2 (h)
24.1 Introduction

Welding or flame cutting in refineries or chemical plants raises many hazards that will not be encountered in the great majority of welding applications. The hazards generally arise from the characteristics of the environment, e.g. the presence of toxic, flammable or explosive liquids, gases or materials. In some chemical plants, highly corrosive fluids may also be present that give rise to serious burns when in contact with the skin.

Refineries and chemical plants have strong and effective regulations that must be adhered to in order to minimise the risks of injury or damage to plant and equipment. In this section, some of the more fundamental aspects of safe working in such environments are briefly described. Other sections of this Note give information that will assist in the adoption of safe working procedures in a variety of circumstances that may apply in refineries and chemical plants (See Chapters 20, 21, 22, 23, 25 and 2).

Site regulations with respect to smoking, only being allowed in clearly designated areas and other special practices should be clearly communicated and understood by all permanent, contract and casual workers.

24.2 Precautions with Toxic or Flammable Liquids or Gases

(a) Welding and cutting can only be carried out in areas where vapours or liquids cannot collect in sufficient quantities to cause problems

(b) Welding and cutting cannot be carried out in areas where falling hot sparks can contact flammable or combustible materials

(c) Gases can travel relatively long distances dependent upon their density, the terrain and wind conditions, resulting in special care being required

(d) In working in confined spaces where there could be a risk of ingress of flammable liquids or gases, all connections should be positively isolated i.e. blanked off. (Closure of one valve should not be relied upon as it could leak or be accidentally opened. Complete removal of the connection, use of spectacle plates or double valves with locking capabilities and intermediate is generally advisable

(e) In dangerous areas, it is essential that two people are present and that fire extinguishers or appropriate fire fighting equipment be available for immediate emergency use

(f) Responsibility for welding operations should be clearly defined in all dangerous areas of the plant

(g) Where any doubt exists as to the presence of explosive or flammable liquids or gases, instruments should be used for testing, i.e. combustible gas detectors, hydrogen sulphide meters, carbon monoxide meters

(h) All sub-contractors must be under strict control and comply with all safety requirements. “Hot-work permits” must be obtained where there is a source of ignition, i.e. welding, electric drilling, grinding and oxy cutting

(i) Welding on Epoxy or coated pipe creates fumes and toxic gases

(j) Oxygen levels in breathing air should be between 19.5 and 23.5% before entry into confined areas. Oxygen levels above this maximum may increase the risk of some materials overheating and igniting. Oxygen levels below this minimum level create a risk of illness or death

(k) A “Safe entry permit” is required before entry to ensure atmospheric checks have been made

(l) The requirements of AS 1674.1 should be met

24.3 Fire Precautions – General

In addition to those listed in Section 24.2 the following general precautions apply (See also Chapter 16).

(a) Safe practices must be defined for specific areas or conditions and must be strictly adhered to, e.g.: Non-sparking tools will be required for work in areas where flammable vapours could still be present. (may be required good practice, but not necessarily followed on all sites)

(b) Flammable materials such as oily rags, wood fibres and the like must be kept free from welding areas where spontaneous combustion or ignition may result. Such materials should be disposed of in a safe manner
(c) Stub ends of electrodes should be safely disposed of
(d) Welding cables and joints must be carefully inspected to ensure they do not overheat in areas that could cause fire, e.g. near paper, wood or dry grass
(e) Welding and other cables should be run so that they do not constitute a tripping hazard, or have the insulation damaged by contacting hot equipment, effluent from vents, aggressive solvents or hydrocarbons and mechanical means
(f) In welding or cutting, materials must be cleaned of oil or flammable compounds to avoid the possibility of fire, as well as to obtain good weld quality
(g) Explosive conditions can occur when welding or cutting on pipes in conditions where residual product may decompose under heat or corrosion product remnants spontaneously ignite. In some circumstances cold cutting techniques may be required
(h) Aerosol non destructive examination (NDE) consumables can be hazardous when used in confined locations – the propellants tend to be flammable hydrocarbons. Therefore in poorly vented conditions they can present a threat of asphyxiation or a risk of explosion on resumption of the welding operation
(i) Only “intrinsically safe” testing equipment should be used in the area

24.4 Plant and Personnel
See also Chapters 4, 22, 27.
(a) Particular care is required for the safety of fellow workers as well as the plant itself
(b) Work current path must not be made through equipment but via the appropriate welding cables
(c) In refineries and chemical plant, special steels may be used on high pressure and high temperature equipment or where corrosive liquids or gases are present. Inadvertent arc strikes may seriously affect the integrity of such equipment and special care is required
(d) Welding in or on machinery will require special procedures in order to avoid hazards (See Chapter 28). The welder, when repair welding, should be alert to potential undetected problems on equipment such as thinned or distorted components. Where such conditions are found they should be reported to the appropriate supervision
(e) Any welding problems detected during welding that could be caused by incorrect materials or conditions should be reported
(f) The welders should be adequately informed of any special process related requirements affecting welding technique prior to undertaking the weld e.g. the need for the low hydrogen “hot pass” to be completed before the cellulose root run has cooled, or complete removal of weld slag in some service requirements
(g) Field radiography can be a potential hazard in a busy Refinery environment. The Site Safety Officer/Welding Supervisor/Responsible Welding Coordinator must be assigned the responsibility to ensure that the radiation site is kept clear of personnel for the duration of the radiography session (normally undertaken out of hours or for small jobs during lunch breaks)
WELDING AND CUTTING AT HEIGHTS OR UNDERNEATH CONSTRUCTION

25.1 Introduction

Many welding operations involved in site or maintenance welding are undertaken at heights where falls have serious consequences. Additionally, falling objects can obviously cause severe injury to personnel below. As many accidents occur in these situations, attention must be paid to the special considerations that apply.

Legislative requirements apply to safety matters when working at heights and specific State/Territory Government requirements need to be known and implemented. AS/NZS 1891.4 Industrial fall-arrest systems and devices – Selection, use and maintenance, Section 1.6 Hierarchy of Control, Figures 1.1 and 1.2 give guidance for the control of risk for people working at heights and fall protection options.

25.2 Electrical Shock

Even minor electrical shock can have a severe result if the welder falls or causes other objects to fall. All of the relevant precautions given in Chapter 14 should be adhered to. Also AS/NZS 1891.4 details other associated risks that should be considered in these circumstances. AS/NZS 1891.4 Section 2.1.4 covers work in adverse environments. AS/NZS 1891.4 Section 2.1.5 covers work task hazards and AS/NZS 1891.4 Section 2.1.6 covers rescue and first aid provisions.

25.3 Head Protection

All personnel working at heights or below construction are required to wear approved safety helmets (hats or caps) complying with AS 1801 Occupational protective helmets.

25.4 Falls or Falling Objects

(a) Statutory authorities in each state have regulations specifying the construction and use of scaffolding (AS/NZS 4576 Guidelines for scaffolding). These regulations must be adhered to. The appropriate Australian Standards are listed as references in Appendix A

(b) Support brackets for scaffolding shall be securely attached to the structure in such a way that tilting is prevented. Where welded connections are used, in constructing or positioning scaffolding, these shall be made by qualified welders and inspected by the job supervisor

(c) Secure loose material on scaffolding to prevent its falling or interference with movement of workmen. Toe boards should be used to further guard against objects being dislodged (AS/NZS 4576 Section 8)

(d) Safety belts or harnesses to AS/NZS 1891.4 Sections 7 and 9 and lines of a type approved by statutory authorities are required where circumstances prevent the use of scaffolding

(e) Ladders and walkways shall be safe and in accordance with statutory regulations. The safe use of ladders, placement, working on, movement, etc. is covered by AS/NZS 1892.5 Portable ladders – selection, safe use and care

(f) Scaffolding shall be fit for service; AS/NZS 4576 Section 8 gives guidance on the load bearing capacity of the working platform

25.5 Storage of Equipment

(a) The minimum equipment necessary for safe working at the required locality should be used

(b) Bins that are properly fastened to supports should be used for electrode stubs and other uses

(c) Care is required in designing and making containers for tools required for use at heights

25.6 Fire or Burns to Personnel

(a) Special care should be taken to ensure that molten metal from cutting or gouging operations will not cause fire or injury hazard below. It will be necessary to prevent such material from falling where people are working below

(b) Consideration should be given to the use of protective shields, nets or screens

25.7 Lifting of Equipment

(a) Personnel should not walk or work directly below any load being lifted or loaded, or within a working distance of a mobile lift

(b) All welding personnel should observe proper lifting rules for the handling of equipment at heights
26.1 Introduction

Where welding and cutting operations are required underwater and under an increasing pressure of one atmosphere for each 10 metres of depth there are process difficulties and personnel risks that should be referred to competent professionals. Divers’ risks are covered by AS 2299 Occupational diving operations. The presence of gases, heat, electricity, tool backpressures, disorientation, noise, light and bubbles has to be additionally considered. Diver/welders need to undertake a nationally accredited training curriculum to ensure that they are aware of problem solving and process difficulties related to depth.

26.2 Proven Equipment

Underwater welding and cutting should only be undertaken using electrodes designed specifically for the underwater environment. Proven equipment specific for the underwater welding and cutting environment is available; a manually operated current supply switch that interrupts the current flow to welding/cutting electrode must be part of any underwater activity. Alternating current (a.c.) should never be used for welding and cutting activities beneath the water surface. All underwater activities must be attended by a dive team member in voice communication with the diver/welder.

At the wave zone activity must be either completely in water or in air and otherwise suited to complete immersion. At shallow depths to 20 m wave surging abounds and below this to about 50 m diver/welders can continue to operate in bounce diving mode. At greater depths to 400 m specialised commercial systems have been proven safe in saturation diving mode.

Welding may be done using manual wet electrodes to about 80 m but weld strength is subject to prevailing conditions and diver/welder skill. Electrode types are generally stainless steel to a depth of 10 m, nickel based to 30 m and rutile type up to 100 m.

Semi-automatic and automatic systems can use qualified procedures in gas filled hyperbaric enclosures when the composition and welding conditions are compensated for the effects of pressure. Conventional welding practice may be used in customised pressure-tight housings. Wet cutting by hand-held oxygen-arc methods with tubular rods, carbon or exothermic electrodes is usually very rough. A straight and smooth finish can be achieved by using a water jet with entrained abrasives.

Mechanical fastenings incorporating drilling, tapping, grinding or ram-set fixtures are practical. In particular friction welded studs installed using hand carried pneumatic tools are available and safe. Surface cleaning with waterjet entrained abrasives, power brushes or very high-pressure water can be used for marine growth removal. Non-destructive examination is possible using very bright lights, photography, stereo image analysis, magnetic particle inspection, ultrasonic testing and gamma radiography. For work in depths of 50 m and deeper, remote controlled vehicles with robotic arms and specialised tooling are used economically and this practice removes many of the diver hazards.

26.3 Personnel

All diving personnel engaged in this work must have qualified diving skills, current medical certification for diving, experience and training in their particular responsibilities and the safety precautions associated with:

(a) Working underwater
(b) Changing depth and effects of pressure
(c) Disorientation control
(d) Communication in water and with surface personnel
(e) Technical procedures being employed

The diver/welder must be fully trained in and qualified in the preparation and use of the equipment, and also have passed a procedure test to a nominated standard. Training should be undertaken in a Government or Industry Approved training establishment. This will ensure proper safety awareness and assist in weld quality assurance.
No work should be undertaken until the above conditions are completely met.

26.4 Procedures

In view of the specialised procedures required to be adopted in welding, cutting and related work under these conditions, it is recommended that:

(a) A well-documented manual of underwater practices and support activities is known and referred to on site
(b) New procedures are trialled under tank immersion or other safe situations
(c) Reference is made to the considerable amount of detailed information that is available in AS 2299 from the Professional Divers Association and from supplier’s handbooks (See also References 30, 31, 32, 33)
(d) Welds made underwater can only be considered temporary, unless deemed otherwise by an authorising body such as Lloyd’s, American Bureau of Shipping (ABS), and Det Norske Veritas (DNV) which can approve permanent welds to be made underwater

It is known that welds carried out in a wet environment are subject to quenching and hydrogen saturation within the weld and heat affected zone (HAZ) that can lead to micro cracking in the HAZ. Welds made in a hyperbaric habitat are also subject to a hydrogen rich environment, with a higher amount of hydrogen being absorbed into the weld zone with increasing depth, thus producing the same inconsistencies as a wet weld.

Surface quality welds (Class A) can be produced with correct training, procedures and expert advice from specialists. The requirements for the classes of weld are defined in AWS D 3.6 covering classes A, B, C, and O.

Class A Comparable to the equivalent surface weld quality, meeting design stresses and applications
Class B Intended for less critical applications where lower ductility, moderate porosity and limited discontinuities may be allowed. Suitability for a particular application should be verified by “Fitness for Purpose” evaluation
Class C Class C welds are intended for applications where load-bearing function is not a primary consideration. A Class C weld shall include a determination that its use will not create fracture initiation sites that will impair the integrity of the primary structure
Class O Class O welds should meet the requirements of a designated Code or Specification determined by the Customer and other additional requirements specified in AWS D 3.6 Section 10
27.1 Introduction
A number of weld tests are carried out during, and on completion of, welded fabrication. Some of these tests introduce hazards to health or safety that require persons nearby during testing to be informed of the dangers and appropriate precautions. Such tests commonly encountered include non-destructive and pressure testing.

27.2 Radiographic Testing
This non-destructive testing method is used frequently on major or critical weldments to assess the integrity and conformance of the welds. The common forms of this testing involve the use of X-ray sets or radioactive isotope units. The ionising radiations emitted are invisible and extremely harmful unless exposures are kept within well-recognised limits.

It is important for all welding personnel to appreciate that:

(a) Health risks may arise with radiographic testing
(b) Precautions are essential to avoid accidental exposure
(c) Operators of radiographic equipment are required under statutory regulations to exercise strict control over persons directly assisting with the testing (including compulsory wearing of dosimeters) and to prevent other people working nearby from entering areas where radiation levels are excessive. All operators require a Licence, upon passing a radiation safety examination, issued by the State Authorities within whose jurisdiction they are working
(d) Where it is necessary to enter the exposure area, film badges and dosimeters are required to be worn to monitor the exposure. Film badges are required to be regularly forwarded to the relevant authority to provide verification that all exposures are within safe limits
(e) Warning signs (See Figure 27.1) and barriers must be erected when gamma ray testing is being carried out and no attempt is to be made to enter these restricted areas
(f) The owner of the facility where radiography is to be performed has overall legal responsibility for safety.

General guidelines to assist owners in organising the work so that it is conducted safely and efficiently are available in a WTIA Guidance Note 10 Industrial Radiography – Safety Management (Reference 50) shown as Figure 27.2

(g) In complex process plants and factories, it is emphasised that in most cases the radiographer will need assistance in this regard. The owner must discuss the job with the radiographer and ensure that precautions are taken to eliminate the possibility of personnel inadvertently circumventing the barriers that the radiographer will erect, e.g. by proceeding along elevated platforms or by being concealed in equipment, ducts or other structures. It is advisable and good practice for Management of the Company, on whose premises the radiographic inspection is being undertaken, to appoint a Responsible Officer (who has operational control over the workforce). Their duty is to oversee the radiographic location during the inspection to ensure that the workers remain outside the designated radiation area (there is a tendency for the workers to ignore the radiation danger signs)

(h) Radiographic equipment must not be tampered with. Serious injury can result from contact with gamma ray sources (See Figure 27.2)
(i) Locking devices fitted to exposure containers must never be tampered with or removed by unauthorised personnel.

(j) More detailed instructions may be found in AS2243.4 Safety in laboratories – Ionising radiations and AS2177 Nondestructive testing – Radiography of welded butt joints in metal.

27.3 Magnetic Particle Testing

There is the danger of electrical shock or burns and damage to the eyes or ears due to blowing particles.

WTIA GUIDANCE NOTE 10: Industrial Radiography – Safety Management

Purpose of this document

Under law, the owner of a business where radiography is performed has overall responsibility for safety. The radiographer has specific responsibilities for the safe use of his equipment.

This document provides guidance to assist the Australian welding and fabrication industry in:

- ensuring that radiography can be conducted on site with minimum disruption to work, and
- outlining the communications required for safe and efficient conduct of radiography.

The information given here is necessarily very general. It is strongly advised that details of the work are discussed with the radiography provider well in advance.

What is radiography, and why is safety an issue?

Radiography involves the use of a beam of radiation to create an image that shows the internal structure of an otherwise opaque object. The radiation can damage living tissue and precautions must be taken to ensure no-one is exposed to hazards by the process.

Job organisation and planning

The owner must assign responsibility for the work to an individual in his or her employ who has sufficient knowledge of and authority within the worksite, and ensure the radiographer is aware of who is assigned and how he or she may be contacted while work is being performed.

The radiographer needs to know what components and what parts of each component are to be inspected by radiography, the material it is made of and its thickness, and what acceptance standard applies. In some instances detailed discussion may be required so the radiographer has a clear idea of the intent of the inspection.

The radiographer will need to have sufficient access to both sides of the components.

Safety precautions

An area around the work site – the ‘radiation zone’ – will need to be vacated of all personnel. Work should be planned for the day in such a way that this can occur with minimum disruption. The radiation zone may be several tens of metres across depending on the situation and the type and strength of the source of radiation, which can vary considerably. Signs and barriers usually need to be erected to ensure that people do not inadvertently enter the radiation zone.

Concrete blocks and other building materials offer very little shielding from the radiation, so the radiation zone extends beyond any wall, floor or ceiling that falls within it. Likewise pressure vessels and ducts offer negligible protection to any occupant. The radiographer must be assured that any part of the radiation zone that cannot be reasonably monitored visually is not occupied while the radiation beam is active. It may be necessary for the owner to provide assistance to achieve this. Particular care must be taken if the radiation zone crosses a property alignment, and it may then be necessary to make suitable arrangements with the neighbours in advance. Where the radiation zone extends into public property it may be necessary to make arrangements with local authorities.

Each situation will be different, and in many instances there may be a way around a particular problem. For example the radiation beam can often be mostly directed away from a sensitive area, but this will depend on the geometry, size and mobility of the component and the nature of the inspection.
27.4 Penetrant Testing

This method uses various chemicals, and fumes from solvents should be avoided. In confined spaces forced air-flow must be provided to prevent concentration of solvent fumes labelled as noxious.

27.5 Pneumatic Testing

This test uses compressed air or other non-flammable gases to check both the integrity and leak tightness of welded containers of various types.

As the volume of the container and the pressure of the air in it increases, the stored energy becomes greater and if welds should be excessively weak or over stressed because of excessive pressure, this energy can result in a violent explosion. Accidents of this type are reported each year and cases are known where persons testing containers of approximately 2 cubic metres volume have been killed with air pressures as low as 60 kPa.

For these reasons statutory authorities and regulations should be consulted prior to carrying out such tests. Welding personnel should therefore appreciate that:

(a) Testing with compressed air or gas can be dangerous and that the danger increases as the volume and pressure increases.

(b) Statutory regulations concerning this test must be complied with. Whenever pneumatic testing is required, precautions must be taken to avoid over-pressurising the container and to avoid the risk of rupture (See AS 1210 Pressure vessels Section 5.11).

(c) Flammable, toxic or explosive gases must not be used for this test.

27.6 Hydrostatic Testing

This test is the normal method of pressure testing pressure vessels, boilers and piping. It serves the same function as pneumatic pressure testing but uses water or other non-hazardous liquids in order to greatly reduce risks associated with rupture. Wherever possible, this method should be used in preference to pneumatic pressure testing.

Because test pressures frequently exceed 20,000 kPa in quite large vessels, it is essential to ensure that:

(a) The vessel is suitably supported

(b) All air in the vessel is replaced by water before testing

(c) Test pressures are not exceeded

(d) Nobody puts himself in line with gasketed joints

NOTES:

1. Similar precautions apply for Acoustic Emission Testing as the vessel is under pressure.

90. Nitral. A solution of 1% to 10% nitric acid (HNO3) mixed with alcohol.

91. Sodium Hydroxide – a solution of sodium hydroxide (NaOH) mixed in water

93. Copper sulphate (CuSO4) 10 g. hydrochloric acid (HCl) 50 ml, water (H2O) 50 m

94. Chrome regia – CrO3 – 30%, HCl – 50%, H2O – 20%

2. Care is needed in draining of thin-walled vessels and tanks to avoid collapse by vacuum equipment since all traces of water must be removed.

27.7 Structural Proof Testing

Many welded structures and machines are given an initial proof load test that checks the integrity of various components and welds. Failures resulting in serious accidents sometimes occur, and thus personnel associated with or near the test must be safely positioned, particularly during any burst test of pressure equipment or collapse during testing of structures.

27.8 Leak Testing

This test is commonly used to check for leaks in various containers and piping. While the stress levels developed during this test are lower than in pneumatic pressure testing, there can be an explosion risk where pressures and volumes are high and pressure is not adequately controlled. Hence the precautions listed in Section 27.5 should also be adopted but where flammable gases are used, leaks must not be checked with any flame.

27.9 Macro Cross-Section Examination

Macro testing of welded joints is often carried out by personnel in fabrication shops for confirmation on the weld shape, the extent of penetration and the soundness of the welded joint prior to sending test coupons to an accredited laboratory.

27.9.1 Safety Precautions

The preparation of etchants involves the handling of potentially dangerous substances. Consequently, etching solutions should only be prepared by or under the guidance of experienced people in a controlled environment and using appropriate safety equipment. Persons using the etchants must likewise be aware of the correct method of storage, handling and use and the potential hazards of misuse.

Commonly used etchants for etching macro cross-sections are:

(a) Nitral90 – used for carbon steels. Most common etchant for Fe, carbon and alloys steels and cast iron - Immerse sample up from seconds to minutes; Mn-Fe, Mn-Ni, Mn-Cu, Mn-Co alloys

(b) Sodium Hydroxide91 – used for aluminium. Mix sodium hydroxide flakes or pellets in water and stir until dissolved. Immerse the specimen for 10 to 60 seconds

(c) Tucker’s reagent92 – used for aluminium. Immerse the specimen for 10 to 60 seconds

(d) Marble’s reagent93 – used for etching Ni, Ni-Cu and Ni-Fe alloys and super-alloys. Add a few drops of H2SO4 to increase activity. Immerse the specimen for 10 to 60 seconds

(e) Chrome regia94 – used for stainless steels
28.1 Introduction
In machines, general industrial plant and special locations, additional hazards may be encountered to those already discussed in previous sections i.e. in addition to electrical, explosion, fire, falls etc. These special hazards also need consideration (See also Chapter 20).

28.2 Lock-Out and Tag-out
In machines, conveyors, cranes, earthmoving and transport equipment there is also a hazard that the equipment will be inadvertently operated while the welder or helper is inside the machine. Cases are known where persons have been caught during repairs in kilns, conveyors, rolls etc.

In these circumstances, it is essential to ensure that the machine cannot be operated until all persons are out of danger. Electric, hydraulic or pneumatic power control and fuel sources must be satisfactorily isolated and locked so they cannot be inadvertently operated.

Additionally, a suitable system of checks should be used to indicate the presence of persons in or on machines where a person would not be readily noticed. One successful system is the Lock-Out, Tag-Out System whereby each person entering a complex machine places a tag near the controls, locks out the electrical isolation with their personal lock, and the machine is not permitted to be operated until all tags and locks are removed by the person placing them.

28.3 Special Locations
Where welding or cutting is to be carried out in special or unusual conditions, it is essential that any possible hazards be identified so that all involved are aware and suitable precautions can be taken. Hence, it is necessary that the plant or site manager or other responsible person be informed of the proposed welding operation and an approval received before work is commenced.

28.4 Working in Tanks, Pipelines, Pressure Vessels, Boilers and Other Containers
Here, in addition to the hazards covered in previous chapters, it is essential that precautions be taken to prevent inadvertent opening of valves or similar openings or operation of conveyors. For this reason such openings or controls should be isolated and locked to ensure that they cannot be opened or operated while personnel are in an unsafe location.

Personnel should be physically fit to perform their duties in this equipment.

28.5 Isolation
(a) Isolation Planners, Isolating Persons and Protected Persons must all be trained and have current authorisation for the specific areas of operation
(b) Isolating persons must understand and be able to demonstrate the ‘verification step’ for all isolations
(c) Isolating persons must understand and demonstrate controls for stored energy and associated isolation requirements e.g. hydraulics, pneumatics, suspended loads, electrical etc.
(d) Protected Persons must attach their personal red lock/danger tag to isolator/group board before working on isolated plant or equipment. Contractors must be supervised by an authorized person when attaching their personal red lock/danger tag to isolator/group board before working on isolated plant or equipment.

95. More detailed information on isolation planning, performing isolations, isolation equipment and isolation procedures is given in Chapter 3.
GENERAL INDUSTRIAL PROTECTION

29.1 Introduction

Welding personnel will frequently be exposed to many additional hazards that arise in general industry but are not specifically related to welding. Examples of such hazards are:

(a) Stepping on, striking against or being struck by objects (excluding falling objects)
(b) Struck by falling objects
(c) Caught in or between objects
(d) Over-exertion, strenuous movements etc.

Where appropriate, these situations have been referred to in previous Chapters of this Note e.g. Chapter 25 Welding and Cutting at Heights or Underneath Construction.

This Chapter deals with more general considerations of industrial safety that have been demonstrated by experience to be major causes of industrial accidents. Additional information is available in AS 1470 Health and safety at work – Principles and practices.

29.2 Ergonomic Considerations

Ergonomics is the design of work so that the best match between human factors and the work environment is achieved. This comprehensive approach takes into consideration individual’s capabilities and limitations and the nature of the task.

Examples of situations in which ergonomic considerations are appropriate include:

(a) Correct design of benches and jigs to avoid discomfort and fatigue
(b) Simple lifting devices to avoid slipped disc, hernia, muscle straining, etc. caused by incorrect manhandling of heavy equipment
(c) Adequate lighting to avoid accidents, eyestrain and stress

The main areas of concern to welding personnel are considered below in Sections 29.3 to 29.8.

29.3 Thermal Discomfort

Working in extremely hot or cold conditions can lead to considerable discomfort and to “heat” or “cold” stress. This will depend on:

(a) Hot conditions – see Chapter 23.
(b) Cold conditions – in cold weather, where possible, shops and work sites should be provided with a facility to avoid excessive drafts. This can often be achieved by appropriate use of mobile screens or temporary partitions. Such screens also facilitate welding using gas shielded processes and provide some protection from rain

Attention is drawn to the need for adequate work clothing to be worn in cold weather and in site welding. Special kneepads may be needed in some cases.

29.4 Lighting

29.4.1 General

Arc and gas welding usually provide sufficiently good local illumination of the workpiece. Adequate general lighting is also required to allow safe access and handling of equipment and consumables.

The quantity and distribution of light required for comfortable and efficient working depends essentially on the type of work being performed and the operator’s vision. Where major variations in work type occur, a facility for obtaining additional local illumination may be required.

Detailed recommendations in respect of artificial lighting of buildings can be found in AS/NZS 1680 Interior and workplace lighting. Important general considerations include:

(a) Avoidance of excessive glare either directly from the light source or by reflection
(b) Obtaining sufficient but not excessive contrast between the workpiece and background
(c) Colour and direction of light
29.4.2 Colour
In welding environments selection of colour is important in avoidance of glare and obtaining a satisfactory general level of illumination. Colours should be pleasant (it is not necessary to choose dark colours – see Section 15.3), and preferably have a matt finish. Background features, such as piping, air conditioning ducting or structural supports, should be the same colour as the background unless they present a hazard. This will reduce the degree of distraction.

29.5 Noise and Vibration
29.5.1 Noise
See Chapter 18.

29.5.2 Vibration
Welding under conditions of vibration may cause discomfort and, if severe, lead to difficulty in welding. Such vibration could occur when welding at heights in construction or maintenance. Control of vibration or discontinuing of work will be required where it is excessive.

29.6 Working Posture
Difficult or uncomfortable postures will lead to rapid fatigue and reduced concentration thereby increasing the risk of accidents. The work should be placed at a height that allows the operator to adopt a stable and comfortable position. Sustained, poor posture can be harmful. Work is best performed at waist level. Work performed above or below this level increases the effort required to do the task. This is particularly important where site conditions introduce additional hazards.

29.7 Manual Handling
When moving and using equipment, workpieces etc. care should be taken to “think first and plan the moves”:
(a) Can the task be handled alone or is assistance needed?
(b) Are gloves, safety footwear or other forms of personal protective equipment needed?
(c) Where is it going?
 (i) Heights
 (ii) how far
 (iii) over uneven ground
 (iv) bench space
(d) Then use a sensible handling technique:
 (i) get close to load with feet in a stable position
 (ii) get a secure safe grip
 (iii) don’t twist body
 (iv) don’t handle from too high or too low
 (v) don’t continue if the object is too heavy or unstable.

Organise work to eliminate unnecessary handling and effort – for example, transport cylinders on a trolley.

29.7.1 Correct Position for Lifting Tall Cylinders
The correct steps for lifting cylinders are:
(a) Up-end the cylinder using the technique illustrated (Figure 29.1 (c))
(b) Locate foot around cylinder
(c) Lower cylinder across thigh by pressing down with rear hand while holding cylinder underneath and slightly beyond centre point
(d) Raise end to desired height
(e) Push cylinder forward by rear hand and leg

29.7.2 Rigging
Where larger workpieces and major items are to be positioned or manipulated for welding fabrication work or readied for transport, the work must be undertaken by a licensed Rigger.

29.8 Other Ergonomic Conditions
These include correct height of seats, workbenches, identification of controls, layout of work, clarity of instructions and notices, job design. All can make important contributions to safety and wellbeing of personnel. Further details can be found, for example, from State/Territory Departments dealing with occupational health.

29.9 Housekeeping
This term refers generally to such factors as the layout and tidiness of the working environment, identification of hazards and walkways etc. and storage of equipment and materials. Close attention to housekeeping can result in a marked reduction in the possibility of accidents occurring and has a favourable psychological effect on personnel. Some of the important factors to be considered are noted below.

(a) Roadways – many accidents occur with moving vehicles on plants and sites. Unobstructed visibility and use of readily visible caution signs are important considerations
(b) Aisles or Walkways – these should be clearly identified, of sufficient width to enable employees to move without danger, and always remain unobstructed
(c) Floor – both work and walking areas should be of non-slip construction and preferably be easily cleaned
(d) Exits – sufficient exits should be available to allow rapid evacuation of personnel and they should be adequately marked by permanent signs and distinctive colours
(e) Hand rails – where required, these should be of adequate construction
(f) Floor openings – openings require clear identification and the provision of guardrails to prevent falls

96. Colour coding systems for piping (AS 1345) should be adhered to in order to avoid hazards that could arise due to the nature of the contained liquid or gas.
(g) Storage – suitable storage facilities should be provided for materials and equipment
(h) Cleanliness – attention should be paid to high standards of cleanliness and tidiness
(i) Spills – spillage of oils or water should be promptly attended to
(j) Scrap – scrap should be immediately placed in bins provided

29.10 Plant and Equipment
Defective plant and equipment or inadequate protective devices lead to many industrial accidents. Some of the important factors to be considered are noted below.
(a) Power supply – see Chapters 4 and 14
(b) Machine guarding – statutory regulations apply to guarding of machines and these must be consulted and applied at all times. Machines and hand tools must not be used if protective guards are either defective or have been removed
(c) Electrical equipment – grinders, drills and any other power tools must be effectively earthed or insulated. Extension cords should not be used unless it is unavoidable to do so
They should be periodically checked for cuts in insulation, loose plugs and connectors. Where work in extremely wet areas is involved, low voltage equipment is advisable.

29.11 Psychological Factors
Performance and safety records of personnel are being increasingly related to the mental health and wellbeing of the individual. Work related human factors that warrant attention include the following:
(a) Management attitudes can to a large extent determine the attitudes of all personnel. Attempts should be made to:
 (i) Develop a team spirit and exchange views
 (ii) Provide sufficient information to enable employees to understand overall objectives and their particular role
 (iii) Develop a health and safety programme
(b) Supervisor attitudes should be based on achieving very good worker relationships
(c) Where exceptionally long shifts are being worked there is a need for assessment of the work patterns for the welders and allied trades to avoid increased risks caused by operator fatigue and inadequate supervision
(d) Monotonous work can quickly lead to lack of care or incentive. Where possible, job planning should provide for job rotation or other suitable means of relieving boredom
(e) Individual limitations should be accounted for by paying attention to mental and physical abilities, aptitudes, training and experience when determining job placements
(f) Grouping of individuals where required should be aimed at maximising the compatibility of teams
(g) Receiving and recognising constructive ideas from all employees should be encouraged e.g. through adoption of suggestion schemes
(h) Latest developments relating to occupational stress, bullying and risk taking

29.12 Natural Hazard Elements
The safety of health of personnel exposure to natural elements must be assured against the special hazards.
(a) Rain – slips, unstable equipment, electric shock, impair weld quality and heat treatment
[Control: Time or delay work or provide rain protection or work inside]
(b) Wind (as above for rain)
(c) Sun – heat stress, problem handling hot materials, skin cancer (See Section 23)
[Control: avoid work in the sun, shade the workplace]
(d) Lightning – protection against lightning is required on buildings or structures or out in open spaces during the construction stage appropriate to local conditions in respect of the frequency and severity of electrical storms. Relevant information is given in AS 1768 Lightning protection. The main precaution is to exit places at high risk of lightning strikes
(e) Water – work in swamps, river crossings or trenches or underground may introduce hazards as for rain and also drowning
[Control: Time or delay work or provide suitable protection]
(f) Grass or bush fires – fire and burns from ignition by welding and hot-work
[Control: Clear all combustible materials]
(g) Wildlife – snakes, spiders, insects, crocodiles, dogs etc.
(h) Allergies

29.13 Personal Gear
Wearers of hearing aids, pacemakers, other electronic equipment, rings, body piercing etc. should check with manufacturers, doctors or others to ensure safety when likely to be exposed to high magnetic fields (e.g. Magnetic particle inspection or high current welding) and high frequency power sources (that can heat metal objects).

29.14 First Aid
(a) Statutory regulations specify minimum requirements for provision of First Aid and medical facilities that must be adhered to
(b) First aid equipment and instruction must be readily available on or near site work
(c) At least one person should have an appreciation of essential first aid (See Reference 13)
(d) The address and telephone number of the nearest available medical service, hospital and ambulance service should be widely displayed

29.15 Materials Handling

Failure to make adequate provision for materials handling and storage can lead to increased risks of accidents. Some considerations that need to be made include:

(a) The need for provision of designated storage areas with appropriate storage racks, lifting facilities and the like

(b) Provision of access to and from storage area

(c) Design of storage areas to ensure ease of handling and secure location of materials

(d) Safe disposal of waste

29.16 Personal Hazards

Management and personnel should be aware of and take reasonable action to ensure risk arising from personal hazards below during welding operations, travel to and from work and at other times are acceptably low:

(a) Drugs and alcohol – can greatly increase risks (avoid or suitably control)

(b) Smoking – especially important if excessively exposed to welding fume or other contaminants

(c) Stress – from all sources particularly by time and personal matters (try to reduce)

(d) Medical – sedation, prescription drugs, medical devices (e.g. Pacemakers) etc. and during rehabilitation: in these cases, medical advice should be followed.

(e) Illegal actions – management and personnel should comply with all laws

29.17 Safe use of Compressed Air

Compressed air is a good source of energy but it has to be handled very carefully in a work environment. Some of the things that need to be borne in mind are:

(a) Safety while testing tanks, containers etc.

(b) Cleaning using compressed air (injury to the eyes by flying particles, fire hazards etc.)

(c) Misuse of compressed air (e.g. body orifices)

(d) Hose whipping

(e) Safe use of air tools

(f) Accidents while using compressed air for discharging fuels

(g) Explosive rupture of air receivers of poorly-maintained compressor equipment
a) Incorrect Lifting

Bending of back over the load and faulty handling techniques can lead to:

- a ruptured or slipped disc in spine
- a strained muscle or fatigue
- a hernia
- an injury to the hand, foot or leg

b) Correct Lifting

Requires less effort and is safer.

Technique is:

- spread feet apart for balance; locate front foot beside load and point it in direction of travel; locate other foot behind centre of load
- bend knees (not beyond 90°)
- ensure correct grip
- maintain straight back
- lift with legs

(c) Correct Position for Lifting Tall Cylinders

- Up-end the cylinder using the technique illustrated
- locate foot around cylinder
- lower cylinder across thigh by pressing down with rear hand while holding cylinder underneath and slightly beyond centre point
- raise end to desired height
- push cylinder forward by rear hand and leg

Figure 29.1 Correct Lifting Techniques
30.1 Welding and musculoskeletal disease

In his presentation during the International Shipbuilding Seminar in Rostock on 11 and 12 September 2003, Dr Roland Kadefors (Reference 53) from the National Institute of Working Life in Gothenburg, Sweden, noted that welders run a higher risk than average of acquiring pain in the musculoskeletal system. A generally high prevalence of complaints of this nature is a common finding as in other types of manual work. In a discussion of the specific risks associated with welding, each joint system in the human body must be considered separately.

With respect to low back pain, the prevalence of complaints is high, but it has not been shown that welding work entails a higher risk than other types of say, metal work. Neck pain seems to be slightly more prevalent in welders than in comparable groups. Biomechanical studies imply that the type of visors that are manoeuvred through neck movements may play a role here. There is a need, however, for more thorough studies in this area before reaching a definite judgement.

There is epidemiological evidence that welding work plays an etiological role in the development of shoulder pain due to tendinitis in the rotator cuff. This observation has also been substantiated through clinical and experimental studies.

With respect to knee complaints, the high prevalence found in shipyard welders seems to be due to problems associated with mechanical pressure in kneeling work in general.

The relative risk for various hand problems in welders found in epidemiological studies warrants a closer look with respect to possible aetiology. To some extent, the complaints may logically be associated with exposure to hand-held vibrating tools or welding with semi-automatic equipment, due to the weight of the welding gun and cable. The high prevalence of Dupuytren's disease, however, and symptoms such as numbness and general weakness in the hand should be investigated clinically and experimentally to establish their possible relations to welding work.

A critical look at the scientific evidence available with respect to musculoskeletal complaints and disorders in welders gives rise to the following conclusions:
(a) Musculoskeletal symptoms are prevalent in welders
(b) Welding work entails an increased risk for shoulder pain due to inflammatory reactions in the rotator cuff
(c) Further studies should be carried out with respect to hand and neck problems

30.2 Designing GMA Welding Guns with Welder Comfort in Mind

A.O. Smith Automotive Products Company, Milwaukee, USA, has been improving the ergonomic design of welding guns, to increase welders’ comfort, reduce fatigue and lower the risk of cumulative trauma disorders.

Welding guns are hand tools, but they add heat and must be held in stiff positions for longer periods of time than most other hand tools. Welding guns should be fitted to the job and the welder. Many cumulative trauma disorders can be attributed to poor tool design and poor training. Factors contributing to cumulative trauma disorders in welding include:
(a) Handle design
(b) Weight
(c) Cable strain relief
(d) Trigger and trigger location
(e) Welder training

30.3 Hand Tools

In the use of hand tools, one important consideration is the static loading of the shoulder, forearm, hand and finger muscles. Static muscle loading varies with the weight of the tool and the orientation in which it is hold. Static muscle loading varies with the rotational torque required to manoeuvre the weld gun.
30.4 Ergonomic Welding Chair

An ergonomic welding chair has been designed by the IHC Merwede Shipyards group in the Netherlands.97

Welding may take place in a variety of postures, ranging from welding downhand in an optimal working zone to welding overhead, kneeling or squatting. Irrespective of posture, however, the high precision demanded by the task requires postural stabilisation, particularly of the hand and the arm. This means that the stabilising muscles of the shoulder are active to a high degree for as long as the welding task continues.

97. Reported to the International Institute of Welding (IIW) Select Committee - Shipbuilding

The IHC designed a movable chair for the welder, with a movable saddle depending on the welding position as shown in the figures.

Low-level physical injury can be avoided by doing warm-up exercises and flexing/stretching exercises prior to the activity. When working in ergonomically challenging positions it is important to take regular breaks and repeat stretching exercises.

High quality of workmanship and high productivity are dependent on optimum ergonomic conditions for the welder. Allowances must also be made for any necessary PPE requirements for the process used and materials being welded.
APPENDIX A
REFERENCES, BIBLIOGRAPHY AND FURTHER INFORMATION

References

27. AWS F4.1, “Recommended Safe Practices for the Prevention for Welding and Cutting of Containers and Piping that have held Dangerous Substances”, American Welding Society.
48. Fume Minimisation Guidelines, WTIA 1999
51. Guidance Note 9 Laser safety, WTIA 2003
52. Guidance Note 10 Industrial Radiography – Safety Management, WTIA 2004
54. EN ISO 14113:1997 Gas Welding Equipment - Rubber and Plastics Hose and Hose Assemblies for use with Industrial Gases up to 450 Bar (45 Mpa)

Australian and New Zealand Standards
Reference should always be made to the latest issue of a standard or code. Australian, New Zealand and other overseas standards are available from SAI Global at www.saiglobal.com

Standards relevant to this Note are listed below.
AS 1210 Pressure vessels
AS 1223 Industrial hand cleaners (Petroleum solvent type).
AS/NZS 1269 Occupational noise management
Part 0: Overview and general requirements
Part 1: Measurement and assessment of noise emission and exposure
Part 2: Noise control management
Part 3: Hearing protector program
Part 4: Auditory assessment
AS/NZS 1270 Acoustics – Hearing protectors
AS 1335 Hose and hose assemblies for welding, cutting and allied processes
AS/NZS 1336 Recommended practices for occupational eye protection
AS/NZS 1337 Personal eye protection
Part 0: Eye and face protectors – Vocabulary
Part 1: Eye and face protectors for occupational applications
Part 2: Mesh and face protectors for occupational applications
Part 4: Personal eye-protection – Filters and eye-protectors against laser radiation (laser eye-protectors)
Part 5: Personal eye-protection – Eye-protectors for adjustment work on lasers and laser systems (laser adjustment eye-protectors)
Part 6: Personal eye protection – Prescription eye protectors against low and medium impact

AS/NZS 1338 Filters for eye protectors
Part 1: Filters for protection against radiation generated in welding and allied operations
Part 2: Filters for protection against ultraviolet radiation
Part 3: Filters for protection against infra-red radiation

AS 1345 Identification of the contents of pipes, conduits and ducts
AS 1349 Bourdon tube pressure and vacuum gauges
AS 1418 Cranes hoists and winches
Part 1: General requirements
Part 2: Serial hoists and winches
Part 3: Bridge, gantry, portal (including container cranes) and jib cranes
Part 4: Tower cranes
Part 5: Mobile cranes
Part 6: Guided storing and retrieving appliances
Part 7: Builders hoists and associated equipment
Part 8: Special purpose appliances
Part 9: Vehicle hoists
Part 10: Elevating work platforms
Part 11: Vehicle-loading cranes
Part 12: Crane collector systems
Part 13: Building maintenance units
Part 14: Requirements for cranes subject to arduous working conditions
Part 15: Concrete placing equipment
Part 16: Mast climbing work platforms
Part 17: Design and construction of workboxes
Part 18: Crane runways and monorails
Part 19: Telescopic handlers

AS 1470 Health and safety at work – Principles and practices

AS/NZS 1576 Scaffolding
Part 1: General requirements
Part 2: Couplers and accessories
Part 3: Prefabricated and tube-and-coupler scaffolding
Part 4: Suspended scaffolding
Part 5: Prefabricated scaffolding
Part 6: Metal tube-and-coupler scaffolding – Deemed to comply with AS/NZS 1576.3

AS 1577 Scaffold planks
AS/NZS 1596 Storage and handling of LP Gas
AS 1627 Metal finishing – Preparation and pretreatment of surfaces
Part 0: Method selection guide
Part 1: Removal of oil, grease and related contamination
Part 2: Power tool cleaning
Part 3: Abrasive blast cleaning of steel
Part 4: Pickling
Part 5: Chemical conversion treatment of metals
Part 6: Pictorial surface preparation standards for painting steel surfaces

AS 1674 Safety in welding and allied processes
Part 1: Fire precautions
Part 2: Electrical

AS/NZS 1680 Interior and workplace lighting
Part 0: Safe movement
Part 1: General principles and recommendations
Part 2.1: Specific applications – Circulation spaces and other general areas
Part 2.2: Specific applications – Office and screen-based tasks
Part 2.3: Specific applications – Educational and training facilities
Part 2.4: Industrial tasks and processes
Part 2.5: Hospital and medical tasks
Part 3: Measurement, calculation and presentation of photometric data
Part 4: Maintenance of electric lighting systems

AS/NZS 1715 Selection, use and maintenance of respiratory protective devices
AS/NZS 1716 Respiratory protective devices
AS 1768 Lightning protection
AS/NZS 1801 Occupational protective helmets
AS 1885 Measurement of occupational health and safety performance
AS/NZS 1869 Hose and hose assemblies for liquefied petroleum gases (LP Gas), natural gas and town gas
AS/NZS 1891 Industrial fall-arrest systems and devices
Part 1: Harnesses and ancillary equipment
Part 2: Horizontal lifeline and rail systems
Part 2 Supp. 1: Prescribed configurations for horizontal lifelines (Supplement to AS/NZS 1891.2:2001)
Part 3: Fall-arrest devices
Part 4: Selection, use and maintenance
AS/NZS 1892.5 Portable ladders – selection, safe use and care
AS 1940 The storage and handling of flammable and combustible materials
AS/NZS 1995 Welding cables
AS/NZS 2161 Occupational protective gloves
Part 1: Selection use and maintenance
Part 4: Protection against thermal risks (heat and fire)
AS 2177 Non destructive testing – Radiography of welded butt joints in metal
AS/NZS 2210 Occupational protective footwear
AS/NZS 2211 Safety of Laser Products
AS 2243.4 Safety in laboratories – Ionising radiations
AS/NZS 2299 Occupational diving operations
AS 2473 Valves for compressed gas cylinders (threaded outlet)
AS 2799 Resistance welding equipment – Single-phase a.c. transformer type
AS 2812 Welding, brazing and cutting of metals – Glossary of terms
AS 2865 Confined places
AS 2885 Pipelines – Gas and liquid petroleum
AS/NZS 3000 Electrical installations
AS/NZS 3190 Approval and test specification – Residual current devices (current-operated earth-leakage devices)
AS 3853 Health and safety in welding and allied processes – Sampling of airborne particles and gases in the operator’s breathing zone
Part 1: Sampling of airborne particles
Part 2: Sampling of gases
AS 3640 Workplace atmospheres – Methods for sampling and gravimetric determination of inhalable dust
AS/NZS 3931 Risk analysis of technological systems—Application guide
AS/NZS 3957 Light-transmitting screens and curtains for welding operations
AS 4214 Gaseous fire extinguishing systems
AS 4267 Pressure regulators for use with industrial compressed gas cylinders
AS 4289 Oxygen and acetylene reticulation systems
AS 4332 The storage and handling of gases in cylinders
AS/NZS 4360 Risk management
AS 4484 Gas cylinders for industrial, scientific, medical and refrigerant use – Labelling and colour coding
AS/NZS 4576 Flashback Arresters – Safety devices for use with fuel gases and oxygen or compressed air
AS/NZS 4576 Guidelines for scaffolding
AS/NZS 4645.2 Gas distribution networks – Steel pipe systems
AS 4840 Low pressure regulators for use in industrial compressed gas reticulation systems
AS 5034 Installation and use of inert gas for beverage dispensing
AS/NZS ISO 31000 Risk management – Principles and guidelines
AS/NZS ISO 60079.0 Explosive atmospheres – Equipment – General requirements
AS/NZS ISO 6079.10.1 ... Explosive atmospheres – Classification of areas – Explosive gas atmospheres (IEC 60079-10-1, Ed.1.0(2008) MOD)

AS/NZS 60079.20 ... Electrical apparatus for explosive gas atmospheres. Part 20: Data for flammable gases and vapours, relating to the use of electrical apparatus.

AS/NZS ISO 60079.11 ... Explosive atmospheres – Equipment protection by intrinsic safety ‘i’

AS/NZS 60479.1 ... Effects of current on human beings Part 1: General aspects

AS/NZS 60529 ... Degrees of protection provided by enclosures (IP Code)

AS/NZS IEC 60825.1 ... Safety of laser products – Equipment classification and requirements

AS/NZS IEC 60825.14 ... Safety of laser products – A user’s guide

AS 60974 ... Arc welding equipment
 Part 1: Welding power sources – (IEC 60974-1:2000, MOD)
 Part 6: Limited duty portable arc welding and allied process power sources (IEC 60974-6:2003, MOD)
 Part 11: Electrode Holders

DR 00394 ... The safe use of portable and mobile oxy-fuel gas systems for welding, cutting and allied processes (Draft Australian Standard for comment

British Standards

British Standards Institution documents are available from SAI Global.

BS 6691 ... Part 1 – Guide to methods for the sampling and analysis of particulate matter
 Part 2 – Guide to methods for the sampling and analysis of gases

BCGA CP 7 ... The safe use of oxy-fuel gas equipment (individual portable or mobile cylinder supply), British Compressed Gas Association.

BS 638.4 ... Arc welding power sources, equipment and accessories: Specification for welding cables

United States of America Standards

ANSI-Z49.1 ... Safety in welding and cutting, and allied processes

ANSI-D3.6M ... Specification for underwater welding

AWS C5.2 ... Recommended Practices for Plasma Arc Cutting and Gouging

AWS F4.1 ... Recommended safe practices for preparation for welding and cutting of containers and piping

AWS F1.3 ... Sampling strategy guide for evaluating contaminants in the welding environment

New Zealand Standard

NZS 4781 ... Code of practice for safety in welding and cutting

Canadian Standard

CAN/CSA – W117.2 – M87 – Safety in Welding, Cutting and Allied Processes

IEC Standards

IEC 60974 ... Arc welding equipment
 Part 2: Liquid cooling systems
 Part 5: Wire feeders
 Part 7: Torches
 Part 12: Coupling devices for welding cables
Work Health and Safety Regulatory and Statutory Authority Publications

Various publications are available from such organisations e.g.
- Exposure Standards
- Dangerous Parts of Machinery
- Electric-Arc Welding – Safety Hints
- First Aid in Industry
- Safety at Work
- Australian Dangerous Goods Code – Australian Code for the transport of dangerous goods by road and rail (Commonwealth Department of Transport)
- Refer also to internet websites operated and maintained by the Statutory Authorities listed in Appendix B.

International Symbols

A number of standardised pictograms are used to provide information and warnings on packaging of goods and permanently fixed to certain equipment throughout the world.

Examples can be found in:
- ISO 7001 Graphical symbols – Public information symbols
- IEC 60417 Graphical symbols for use on equipment (this is also available as an online database comprising all graphical symbols published in IEC 60417)
- EU Regulation on the Classification, Labelling and Packaging of Substances and Mixtures
- UN Globally Harmonised System of Classification and Labelling of Chemicals (GHS)
- United States Department of Transportation (DOT)

Conversion factors

<table>
<thead>
<tr>
<th>Mulitply</th>
<th>Original Unit</th>
<th>Factor</th>
<th>Converted Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metres3/hour</td>
<td>by 16.66</td>
<td>Litres/minute</td>
<td></td>
</tr>
<tr>
<td>Litres/minute</td>
<td>by 0.06</td>
<td>Metres3/hour</td>
<td></td>
</tr>
<tr>
<td>Litres/minute</td>
<td>by 2.119</td>
<td>Cubic feet/hour</td>
<td></td>
</tr>
<tr>
<td>Cubic feet/hour</td>
<td>by 0.4719</td>
<td>Litres/minute</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX B

STATUTORY AUTHORITIES

National

Safe Work Australia
Safe Work Australia is the national policy body responsible for the development and evaluation of the model work health and safety laws. It includes the functions of the former National Occupational Health and Safety Commission and the Australian Safety and Compensation Council (ASCC). The Commonwealth, states and territories are responsible for regulating and enforcing the laws in their jurisdictions.
Website: www.safeworkaustralia.gov.au
Email: info@safeworkaustralia.gov.au
Phone: 1300 551 832

Comcare
Rehabilitation and workers’ compensation and occupational health and safety arrangements for Australian Government employees and for the employees of organisations which self-insure under the scheme.
Website: www.comcare.gov.au
Phone: 1300 366 979

Australian Capital Territory

WorkSafe ACT
Website: www.worksafe.act.gov.au
Email: worksafe@act.gov.au
Phone: +61 (0)2 6207 3000

Queensland

Workplace Health and Safety Queensland, Department of Justice and Attorney-General (WHSQ)
Website: www.worksafe.qld.gov.au
Email: safe@justice.qld.gov.au
Phone: 1300 369 915

Q-COMP
Website: www.qcomp.com.au
Email: qcomp@qcomp.com.au
Phone: 1300 361 235

WorkCover Queensland
Website: www.workcoverqld.com.au
Email: info@workcoverqld.com.au
Phone: 1300 362 128

Queensland Government – Department of Natural Resources and Mines
Website: www.dnrm.qld.gov.au
Phone: 13 74 68

Electrical Safety Office (ESO) – Department of Justice and Attorney General
Phone: 1300 650 662 or 1300 362 320

Information correct at 14 July 2013
New South Wales

WorkCover NSW
Website: www.workcover.nsw.gov.au
Phone: 13 10 50
Email: contact@workcover.nsw.gov.au

NSW Department of Trade and Investment – Division of Resources and Energy – Mine Safety
Website: www.resources.nsw.gov.au/safety
Phone: +61 (0)2 8281 7777 or 1300 736 122

South Australia

SafeWork SA
Website: www.safework.sa.gov.au
Email: help@safework.sa.gov.au
Phone: 1300 365 255

Victoria

WorkSafe Victoria
Website: www.worksafe.vic.gov.au
Email: info@worksafe.vic.gov.au
Phone: 1800 136 089 or +61 (0)3 9641 1444

Energy Safe Victoria (ESV)
Website: www.esv.vic.gov.au
Email: info@esv.vic.gov.au
Phone: 1800 652 563 or 1800 815 721

Tasmania

Workplace Standards Tasmania
Website: www.wst.tas.gov.au
Email: wstinfo@justice.tas.gov.au
Phone: +61 (0)3 6233 7657 or 1300 366 322

WorkCover Tasmania
Website: www.workcover.tas.gov.au
Email: workcover@justice.tas.gov.au
Phone: +61 (0)3 6233 7657 or 1300 776 572

Western Australia

WorkSafe WA
Website: www.commerce.wa.gov.au/WorkSafe/
Email: safety@commerce.wa.gov.au
Phone: +61 (0)8 9327 8777

Department of Mines and Petroleum
Website: www.dmp.wa.gov.au
Phone: +61 (0)8 9222 3333

Northern Territory

NT WorkSafe
Website: www.worksafe.nt.gov.au
Email: ntworksafe@nt.gov.au
Phone: 1800 019 115

New Zealand

Ministry of Business, Innovation and Employment
Health and Safety Group
Website: www.business.govt.nz/healthandsafetygroup
Phone: 64 4 915 4000

This information is from the SafeWork Australia website 14 July 2013. Information on Exposure Standards applicable in individual States at the time of reading should be obtained by contacting the relevant State Government authority (Appendix B).

For jurisdictions that have implemented the harmonised Work Health and Safety (WHS) laws, refer to the Workplace Exposure Standards for Airborne Contaminants document December 2011.

For jurisdictions yet to adopt the model WHS laws, refer to the Adopted National Exposure Standards for Atmospheric Contaminants in the Occupational Environment [NOHSC: 1003 (1995)]

NOTE: There have been a number of amendments to this document since its publication in 1995, however these have not been consolidated into the list of exposure standards published.

Substances listed in these documents have exposure standards based on health effects for most workers. However, there are a number of instances where other considerations, such as, economic, social or technological implications, or sampling and analytical limitations, have also been taken into account.

Both documents can be downloaded free of charge from the SafeWork Australia website www.safeworkaustralia.gov.au

A current list of all declared National Exposure Standards can be obtained from the Hazardous Substances Information System (HSIS) http://hsis.ascc.gov.au/
The following chemical symbols are used in this Technical Note:

<table>
<thead>
<tr>
<th>Metals</th>
<th>Metal Oxides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>Al₂O₃ Aluminium Oxide</td>
</tr>
<tr>
<td>Al</td>
<td>CrO₃ Chromium (VI) Oxide</td>
</tr>
<tr>
<td>Be</td>
<td>Fe₂O₃ Iron (III) Oxide</td>
</tr>
<tr>
<td>Cd</td>
<td>MgO Magnesium Oxide</td>
</tr>
<tr>
<td>Co</td>
<td>SnO₂ Tin (IV) Oxide</td>
</tr>
<tr>
<td>Cr</td>
<td>V₂O₅ Vanadium (V) Oxide</td>
</tr>
<tr>
<td>Cu</td>
<td>ZnO Zinc Oxide</td>
</tr>
<tr>
<td>Fe</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>Oxygen</td>
</tr>
<tr>
<td>Mo</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>Ni</td>
<td>Carbon Monoxide</td>
</tr>
<tr>
<td>Sn</td>
<td>CO₂ Carbon Dioxide</td>
</tr>
<tr>
<td>Ti</td>
<td>COCl₂ Phosgene</td>
</tr>
<tr>
<td>V</td>
<td>O₃ Ozone</td>
</tr>
<tr>
<td>W</td>
<td>NO₂ Nitrogen (IV) Oxide</td>
</tr>
<tr>
<td>Zn</td>
<td>CCl₄ Carbon Tetrachloride</td>
</tr>
</tbody>
</table>

Gases and Vapours

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂</td>
<td></td>
</tr>
<tr>
<td>N₂</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td></td>
</tr>
<tr>
<td>COCl₂</td>
<td></td>
</tr>
<tr>
<td>O₃</td>
<td></td>
</tr>
<tr>
<td>NO₂</td>
<td></td>
</tr>
<tr>
<td>CCl₄</td>
<td></td>
</tr>
</tbody>
</table>

Other

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SnH₄</td>
</tr>
<tr>
<td>HF</td>
</tr>
</tbody>
</table>
APPENDIX E

TYPICAL FORM FOR A HOT-WORK PERMIT

<table>
<thead>
<tr>
<th>Hot-Work Permit</th>
</tr>
</thead>
<tbody>
<tr>
<td>If you answer No to any of the following questions and can’t address the issue yourself, you must stop and seek advice from your Supervisor. This Hot-Work Permit is required for any welding, thermal or oxy cutting, friction cutting, heating and other fire or spark producing operation in any area not designated as a Hot-Work Area.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1. Equipment to be used ..</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.g. oxy-acetylene cutting equipment, arc-welding equipment. Ensure equipment is well maintained</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Is a Safe Work Procedure (SWP) and/or Pre-job Risk Assessment available and has it been communicated to the work party?</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Responsible Officer (R.O.) shall ensure that risk assessment has been carried out and communicated to the work party</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Have hot-work hazards been identified and controls put in place to eliminate the risks associated with the hazards?</th>
</tr>
</thead>
<tbody>
<tr>
<td>The R.O. shall ensure that appropriate controls have been put in place to eliminate the risks associated with the hazards</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Fire fighting equipment – to be laid out at the worksite ..</th>
</tr>
</thead>
<tbody>
<tr>
<td>List the type, size, quantity and location of fire fighting equipment allocated to the site as a result of risk assessment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Is the equipment approved for use at the site for the work you are doing?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>6. Are flashback arresters fitted to both ends of the hoses on oxy-fuel gas equipment?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>7. Is there a Hazard Reduction Device (HRD) fitted to welding power sources that have an open circuit voltage exceeding extra low voltage?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8. Is the required Personal Protective Equipment (PPE) for the hot-work available and in good order?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9. How long will the area be monitored by the firewatcher after the hot-work is completed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>This will depend on the nature of the work, combustible materials, and other matters identified in the risk assessment</td>
</tr>
</tbody>
</table>
10. Are Material Safety Data Sheets (MSDS) available for the welding equipment and materials being worked on, and possible products of the hot-work process?
☐ Yes ☐ No

11. Is the work party trained in the correct and safe use of the hot-work equipment?
☐ Yes ☐ No

12. COMPETENT PERSONNEL
Competent personnel only shall be used for hot-work?
☐ Yes ☐ No

13. ISOLATION AND PREPARATION OF THE WORK AREA
Determine whether the following items have been isolated, removed, or checks made.
Note: All questions are to be answered and initialled by the issuing R.O.
Write 'N/A' against items which are not applicable.

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Have drains, pits and depressions been checked, isolated and sealed?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b. Have combustible materials been removed from the work area or made safe?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>All combustible materials should be removed from within 15 m (around, above and below) of the hot-work.</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
| c. Where it is not possible to remove combustible materials, has the area been controlled?
Has the area been cleaned? | ☐ | ☐ |
| d. Have tanks, valves, vents and pipelines been blanked off or effectively isolated? | ☐ | ☐ |
| e. Is ventilation adequate?
Consider the possibility of changing conditions and ensure that airflow is adequate | ☐ | ☐ |
| f. Are spark and flash screens in place? | ☐ | ☐ | |
| g. Have leaks from valve and pump glands, flanges and the like been controlled? | ☐ | ☐ |
| h. Have pressure relief valves been vented to safe areas? | ☐ | ☐ |
| i. Has contaminated ground been covered? | ☐ | ☐ |
| j. Is the fire equipment adequate, checked and laid out ready for use? | ☐ | ☐ |
| k. Is the fire protection equipment within range (10 m) of the proposed work? | ☐ | ☐ |
| l. Is the fire pump or fire brigade on standby? | ☐ | ☐ |
| m. Is the wind direction satisfactory for hot-work to be done? | ☐ | ☐ |
| n. Has product movement been stopped in the area of hot-work? | ☐ | ☐ |
| o. Has the site of the hot-work been isolated and roped off? | ☐ | ☐ |
| p. | Have all mechanical / electrical / hydraulic energies been isolated and tagged? | Yes | No |
| q. | Have all unnecessary power cables and gas hoses been removed from the immediate work area? | Yes | No |
| r. | Do Automatic Fire Systems need to be isolated? The R.O. must be notified if the system is to be isolated | Yes | No |

14. **ATMOSPHERE**

Atmospheric testing may be required at the work site and to monitor atmospheres within closed spaces affected by hot-work

| a. | Is atmospheric testing required? | Yes | No |
| b. | Is continual monitoring required? | Yes | No |

| c. | Equipment make and model | Ensure the test equipment is capable of determining the gases that may be present |

| d. | Serial No. |

| e. | Date of last equipment check | Gas testing equipment should be challenge tested on calibrated gas mixtures on a regular basis |

| f. | Time of test | If continual monitoring is required a separate table should be used to record results of tests |

| g. | Results of tests | If continual monitoring is required a separate table should be used to record results of tests |

| h. | Percentage of L.E.L. | Ensure the concentration of any flammable gas and flammable vapour is less than 5% of its lower explosive limit (L.E.L.) |

| i. | Is hot-work safe to proceed? | Yes | No |

15. **SPECIFIC CONDITIONS AND PRECAUTIONS**

| a. | The following conditions and precautions were observed |

| b. | This permit is valid from am / pm on / / to am / pm on / / |

| c. | Name of contractor performing the work |

| d. | Order or contract no. |

| e. | Name and signature of firewatcher (where required): |

<p>| (Print Name) | (Signature) |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit received by:</td>
<td></td>
</tr>
<tr>
<td>I have read and understood this permit and agree to carry out the work observing all the conditions of this permit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Person in charge of location</td>
<td></td>
</tr>
<tr>
<td>I have read and understood this permit and authorise the work to proceed under the conditions of the permit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Responsible Officer (R.O.)</td>
<td></td>
</tr>
<tr>
<td>The work area described above is, in my opinion, in a safe condition for the work described to be done, provided the precautions listed are fully observed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Return permit:</td>
<td></td>
</tr>
<tr>
<td>I accept the work as defined in Sections 2 and 3 of this permit has been completed and I cancel this permit</td>
<td></td>
</tr>
<tr>
<td>This permit was cancelled by:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>This permit was returned to:</td>
<td></td>
</tr>
<tr>
<td>At ______ am / pm on ______ / ______ / ______</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>The worksite has been inspected by me at the expiry/cancellation of this hot-work permit and declared safe for normal operations to resume.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>THIS HOT-WORK PERMIT SHOULD BE PROMINENTLY DISPLAYED ON THE WORKSITE</td>
<td></td>
</tr>
</tbody>
</table>
Confined Space Entry Permit

If you answer No to any of the following questions and can’t address the issue yourself, you must stop and seek advice from your Supervisor

This Confined Space Entry Permit is required for entry into a confined space as defined in AS 2865

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 1. | Equipment to be used..
e.g. oxy-acetylene cutting equipment, arc-welding equipment. Ensure equipment is well maintained | | |
| 2. | Is a Safe Work Procedure (SWP) and/or Pre-job Risk Assessment available and has it been communicated to the work party?
The Responsible Officer (R.O.) shall ensure that risk assessment has been carried out and communicated to the work party | | |
| 3. | Have hot-work in confined spaces hazards been identified and controls put in place to eliminate the risks associated with the hazards?
The R.O. shall ensure that appropriate controls have been put in place to eliminate the risks associated with the hazards | | |
| 4. | Fire fighting equipment – to be laid out at the worksite..
List the type, size, quantity and location of fire fighting equipment allocated to the site as a result of risk assessment | | |
| 5. | Is the equipment approved for use at the site for the work you are doing? | | |
| 6. | Are flashback arresters fitted to both ends of the hoses on oxy-fuel gas equipment? | | |
| 7. | Is there a Hazard Reduction Device (HRD) fitted to welding power sources that have an open circuit voltage exceeding extra low voltage? | | |
| 8. | Is the required Personal Protective Equipment (PPE) for the hot-work available and in good order? | | |
| 9. | How long will the area be monitored by the firewatcher after the hot-work is completed?
This will depend on the nature of the work, combustible materials, and other matters identified in the risk assessment | |
10. Are Material Safety Data Sheets (MSDS) Sheets available for the welding equipment and materials being worked on, and possible products of the hot-work process?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. In the event of an emergency, is the procedure available and understood

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12. COMPETENT PERSONNEL
Competent personnel only shall be used for hot-work in a confined space

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13. ISOLATION AND PREPARATION OF THE WORK AREA
Determine whether the following items have been isolated, removed, or checks made:
Note: All questions are to be answered and initialled by the issuing responsible officer. Write 'N/A' against items which are not applicable.

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>j.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
o. Has the site of the hot-work been isolated and roped off?
 □ Yes □ No

p. Have all mechanical / electrical / hydraulic energies been isolated and tagged?
 □ Yes □ No

q. Have all unnecessary power cables and gas hoses been removed from the immediate work area?
 □ Yes □ No

r. Do Automatic Fire Systems need to be isolated?
 The R.O. must be notified if the system is to be isolated
 □ Yes □ No

14. ATMOSPHERE
 Atmospheric testing may be required at the work site and to monitor atmospheres within closed spaces affected by hot-work

 a. Is atmospheric testing required?
 □ Yes □ No

 b. Is continual monitoring required?
 □ Yes □ No

 c. Equipment make and model...
 Ensure the test equipment is capable of determining the gases that may be present

 d. Serial No. ...

 e. Date of last equipment check ..
 Gas testing equipment should be challenge tested on calibrated gas mixtures on a regular basis

 f. Time of test ..
 If continual monitoring is required a separate table should be used to record results of tests

 g. Results of tests ..
 If continual monitoring is required a separate table should be used to record results of tests

 h. Percentage of L.E.L. ..
 Ensure the concentration of any flammable gas and flammable vapour is less than 5% of its lower explosive limit (L.E.L.)

 i. Is hot-work safe to proceed in the confined space?
 □ Yes □ No

15. SPECIFIC CONDITIONS AND PRECAUTIONS

 a. The following conditions and precautions were observed
 ..
 ..
 ..

 b. This permit is valid from am / pm on / / to am / pm on / /

 c. Name of contractor performing the work...

 d. Order or contract no. ..
<table>
<thead>
<tr>
<th>Section</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>e.</td>
<td>Name and signature of firewatcher (where required):</td>
</tr>
<tr>
<td></td>
<td>..</td>
</tr>
<tr>
<td></td>
<td>(Print Name)</td>
</tr>
<tr>
<td>f.</td>
<td>Name and signature of observer (where required):</td>
</tr>
<tr>
<td></td>
<td>..</td>
</tr>
<tr>
<td></td>
<td>(Print Name)</td>
</tr>
<tr>
<td>g.</td>
<td>Permit received by:</td>
</tr>
<tr>
<td></td>
<td>I have read and understood this permit and agree to carry out the work observing all the conditions of this permit</td>
</tr>
<tr>
<td></td>
<td>..</td>
</tr>
<tr>
<td></td>
<td>(Print Name)</td>
</tr>
<tr>
<td>h.</td>
<td>Person in charge of location</td>
</tr>
<tr>
<td></td>
<td>I have read and understood this permit and authorise the work to proceed under the conditions of the permit</td>
</tr>
<tr>
<td></td>
<td>..</td>
</tr>
<tr>
<td></td>
<td>(Print Name)</td>
</tr>
<tr>
<td>i.</td>
<td>Responsible Officer (R.O.)</td>
</tr>
<tr>
<td></td>
<td>The work area described above is, in my opinion, in a safe condition for the work described to be done, provided the precautions listed are fully observed</td>
</tr>
<tr>
<td></td>
<td>..</td>
</tr>
<tr>
<td></td>
<td>(Print Name)</td>
</tr>
<tr>
<td>j.</td>
<td>Return permit:</td>
</tr>
<tr>
<td></td>
<td>I accept the work as defined in Sections 2 and 3 of this permit has been completed and I cancel this permit</td>
</tr>
<tr>
<td></td>
<td>This permit was cancelled by:</td>
</tr>
<tr>
<td></td>
<td>..</td>
</tr>
<tr>
<td></td>
<td>(Print Name)</td>
</tr>
<tr>
<td></td>
<td>This permit was returned to:</td>
</tr>
<tr>
<td></td>
<td>..</td>
</tr>
<tr>
<td></td>
<td>..</td>
</tr>
<tr>
<td></td>
<td>(Print Name)</td>
</tr>
<tr>
<td></td>
<td>I have inspected the worksite at the expiry / cancellation of this confined space permit and declared safe for normal operations to resume.</td>
</tr>
<tr>
<td></td>
<td>..</td>
</tr>
<tr>
<td></td>
<td>(Print Name)</td>
</tr>
</tbody>
</table>

THIS CONFINED SPACE PERMIT SHOULD BE PROMINENTLY DISPLAYED ON THE WORKSITE
Flashback arresters for manifolds, tapping points and single cylinders (Information and Diagrams Courtesy Ibeda)

Flashback arresters provide protection against flashbacks, passage of gas in the direction opposite to flow and burnbacks (See Chapter 5)

The flame arrester is a stainless steel sintered element which stops any flashback from the gas outlet side.

The good thermal conductivity, high porosity and small pore size of the sintered element lead to flame quenching.

The gas non-return valve is held open by energy in the gas stream and closes when downstream pressure is approximately equal to, or greater than, that in normal direction of flow.

The temperature-sensitive cut-off valve is held open, e.g. by a fusible metal, and actuated by sustained temperature rise.

Flashback Arresters

![Flashback Arresters Diagrams](image)

NOTES:
1. Dust filter
2. Non-return valve open
3. Flame arrester
4. Temperature-sensitive cut-off valve open

Figure G.1 Flashback Arrester – Normal Flow

NOTES:
1. Dust filter
2. Non-return valve closed
3. Flame arrester
4. Temperature-sensitive cut-off valve open

Figure G.2 Flashback Arrester – Reverse Flow of Oxygen or Fuel Gas

NOTES:
1. Dust filter
2. Non-return valve closed
3. Flame arrester
4. Temperature-sensitive cut-off valve closed

Figure G.3 Flashback Arrester – Flashback

NOTES:
1. Dust filter
2. Non-return valve closed
3. Flame arrester
4. Temperature-sensitive cut-off valve closed

Figure G.4 Flashback Arrester – Burnback
WTIA EXPERT TECHNOLOGY TOOLS

These Expert Technology Tools may be obtained from the
WTIA, PO Box 6165 Silverwater NSW 1811 Australia
Phone: +61 (0) 2 8748 0100 Fax: +61 (0) 2 8748 0181 Email: info@wtia.com.au URL: www.wtia.com.au

WTIA TECHNICAL NOTES
(Hard copy, CD or network licence available)

1. The Weldability of Steels – TN 1-06
Gives guidance on the preheat and heat input conditions (run size, current, voltage) required for acceptable welds and to avoid cold cracking in a wide variety of steels. The Note is applicable to a wide range of welding processes.

2. Successful Welding of Aluminium – TN 2-06
This note covers the major welding processes as they are used for the welding and repair of aluminium and its alloys. Information is given on the processes, equipment, consumables and techniques. It also provides information on the range of alloys available and briefly covers safety, quality assurance, inspection and testing, costing and alternative joining processes.

3. Care and Conditioning of Arc Welding Consumables – TN 3-06
Gives the basis and details for the correct care, storage and conditioning of welding consumables to control hydrogen and to ensure high quality welding.

4. The Industry Guide to Hardfacing for the Control of Wear – TN 4-06
Describes wear mechanisms and gives guidance on the selection of hardfacing consumables and processes for a wide range of applications. Includes Australian hardfacing Suppliers Compendium 1998.

5. Flame Cutting of Steels – TN 5-94
Gives a wealth of practical guidance on flame cutting including detailed procedures for efficient cutting, selection of equipment and gases, practices for identifying and curing defective cutting, methods of maximising economy and other important guidance on the use of steels with flame cut surfaces.

6. Control of Lamellar Tearing – TN 6-85
Describes the features and mechanisms of this important mode of failure and the means of controlling tearing through suitable design, material selection, fabrication and inspection. Acceptance standards, repair methods, specification requirements and methods of investigation are proposed. Four appendices give details on the mechanism, material factors, tests for susceptibility and the important question of restraint.

Provides information on all aspects of health and safety in welding and cutting. Designed to provide this information in such a way that it is readily useable for instruction in the shop and to provide guidance to management. Recommendations are given for safe procedures to be adopted in a wide variety of situations found in welding fabrication.

8. Economic Design of Weldments – TN 8-79
Principles and guidance are given on methods and procedures for optimising design of weldments and welded joints and connections to maximise economy in welding fabrication. Factors influencing the overall cost of weldments that need to be considered at the design stage are discussed.

Gives practical guidance and information on the selection of welding conditions to improve productivity during manual metal arc welding (MMAW). Graphs are provided showing rates as a function of weld size. The graphs enable a direct comparison of different types of welding electrodes when used for butt and fillet welds in various welding positions.

10. Fracture Mechanics – TN10-02
Provides theory and gives practical guidance for the design and fabrication of structures, planning of maintenance and assessment of the likelihood of brittle or ductile initiation from flaws in ferrous and non-ferrous alloys. Engineering critical assessment case histories and discussed.

The Note complements AS/NZS 1554 parts 1 to 5, by presenting background information that could not be included in the Standard. It discusses the requirements of the Standard with particular emphasis on new or revised clauses. In explaining the application of the Standard to welding in steel construction, the commentary emphasises the need to rely on the provisions of the Standard to achieve satisfactory weld quality.
12. Minimising Corrosion in Welded Steel Structures – TN 12-96
Designed to provide practical guidance and information on corrosion problems associated with the welding of steel structures, together with possible solutions for minimising corrosion.

13. Stainless Steels for Corrosive Environments – TN 13-00
Provides guidance on the selection of stainless steels for different environments. Austenitic, ferritic and martensitic stainless steels are described together with the various types of corrosive attack. Aspects of welding procedure, design, cleaning and maintenance to minimise corrosion are covered.

Written because of the widely expressed need for guidance on the design and fabrication of welded steel bulk solids containers, this Technical Note gathers together relevant information on functional design, wall loads, stress analysis, design of welded joints and the fabrication, erection and inspection of steel bins. It also contains a very comprehensive reference list to assist in a further understanding of this very broad subject.

15. Welding and Fabrication of Quenched and Tempered Steel – TN 15-96
Provides information on quenched and tempered steels generally available in Australia and gives guidance on welding processes, consumables and procedures and on the properties and performance of welded joints. Information is also provided on other important fabrication operations such as flame cutting, plasma cutting, shearing and forming.

16. Welding Stainless Steel – TN 16-85
This Technical Note complements Technical Note Number 13 by detailing valuable information on the welding of most types of stainless steels commonly used in industry.

17. Automation in Arc Welding – TN 17-86
Provides information and guidance on all the issues involved with automation in arc welding. The general principles are applicable to automation in any field.

18. Welding of Castings – TN 18-87
Provides basic information on welding procedures for the welding processes used to weld and repair ferrous and non-ferrous castings. It also provides information on the range of alloys available and briefly covers non-destructive inspection, on-site heating methods and safety.

Provides guidelines on the application of the AS/NZS ISO 9000 series of Quality Standards within the welding and fabrication industries. Guidance on the writing, development and control of Welding Procedures is also given.

20. Repair of Steel Pipelines – TN 20-04
Provides an outline of methods of assessment and means of repair available to a pipeline whilst allowing continuity of supply.

Provides an introduction to submerged arc welding equipment, process variables, consumables, procedures and techniques, characteristic weld defects, applications and limitations. Describes exercises to explore the range of procedures and techniques with the use of solid wire (single and multiple arcs) and provides welding practice sheets, that may be used by trainees as instruction sheets to supplement demonstrations and class work, or as self-instruction units.

22. Welding Electrical Safety – TN 22-03
Provides information and guidance on welding, electrical safety issues, welding equipment, the human body and the workplace.

23. Environmental Improvement Guidelines – TN 23-02
Provides information and guidance on how to reduce compensation in the welding and Fabrication industry, simultaneously and reduce the impact on the environment.

Assists companies to introduce Quality Management and Welding Coordination into their Total Welding Management System (TWMS) through implementation of the IIW Manufacturers Certification Scheme According to ISO 3834 (IIW MCS ISO 3834) and AS/NZS ISO 3834

Published with the Water Services Association of Australia. Applies to all metal fabrication and repair work, involving welding, carried out by a Water Agency (WA) and its Contractors/Subcontractors. Prescribes weld preparation, qualification of welding procedure and personnel, workmanship and inspection requirements for welds related to the arc welding by manual metal arc and other processes approved by the WA Responsible Welding Coordinator. A schematic of a TWMS is found in the preface of this document.

WTIA MANAGEMENT SYSTEMS AND OTHER PUBLICATIONS

MS01-TWM-01. Total Welding Management System [CD ROM]
MS02/5-OHS-01. Welding OHS&R Management System [CD ROM] (incorporating MS02; MS03; MS04; MS05)
MS06-ENV-01 Welding Environmental Management System
MS07-OHSMINE-01 Occupational Health and Safety Management System for Cutting and Welding in the Mining Industry PLUS Self Assessment Tool
PG-WD-01 Weld Defects Pocket Guide
PG-SS-01 Welding Stainless Steel Pocket Guide
CR-01 Contract Review for Welding and Allied Industries [CD ROM]